LRP2000 Passive Reader/Writer

Manual Revision 04, 04-04 **Publication # 17-1050**

Escort Memory Systems Warranty

Escort Memory Systems warrants that all products of its own manufacture conform to Escort Memory Systems specifications, and are free from defects in material and workmanship when used under normal operating conditions and within the service conditions for which they were furnished. The obligation of Escort Memory Systems hereunder shall expire one (1) year after delivery, unless otherwise specified, and is limited to repairing, or at its option, replacing without charge, any such product which in Escort Memory System's sole opinion proves to be defective within the scope of this Warranty. In the event Escort Memory Systems is not able to repair or replace defective products or components within a reasonable time after receipt thereof, Buyers shall be credited for their value at the original purchase price. Escort Memory Systems must be notified in writing of the defect or nonconformity within the warranty period and the affected product returned to Escort Memory Systems factory or to an authorized service center within thirty (30) days after discovery of such defect or nonconformity. Shipment shall not be made without prior authorization by Escort Memory Systems.

This is Escort Memory Systems' sole warranty with respect to the products delivered hereunder. No statement, representation, agreement or understanding oral or written, made by an agent, distributor, representative, or employee of Escort Memory Systems which is not contained in this warranty, will be binding upon Escort Memory Systems, unless made in writing and executed by an authorized Escort Memory Systems employee. Escort Memory Systems makes no other warranty of any kind whatsoever, expressed or implied, and all implied warranties of merchantability and fitness for a particular use which exceed the aforestated obligation are hereby disclaimed by Escort Memory Systems and excluded from this agreement. Under no circumstances shall Escort Memory Systems be liable to Buyer, in contract or in tort, for any special, indirect, incidental, or consequential damages, expenses, losses or delay however caused. Equipment or parts which have been subject to abuse, misuse, accident, alteration, neglect, unauthorized repair or installation are not covered by warranty. Escort Memory Systems shall make the final determination as to the existence and cause of any alleged defect. No liability is assumed for expendable items such as lamps and fuses. No warranty is made with respect to equipment or products produced to Buyer's specifications except as specifically stated in writing by Escort Memory Systems in the contract for such custom equipment. This warranty is the only warranty made by Escort Memory Systems with respect to the goods delivered hereunder, and may be modified or amended only by a written instrument signed by a duly authorized officer of Escort Memory Systems and accepted by the Buyer. Extended warranties of up to four years are available for purchase for most EMS products. Contact EMS or your distributor for more information.

EMS reserves the right to make changes to its products or discontinue them at any time without notice. EMS provides customer assistance in various technical areas, but doesn't have full access to data concerning the use and application of the customer's products. Therefore, EMS assumes no liability and is not responsible for customer's applications or products or software design and performance relating to systems or applications incorporating EMS products.

In addition, EMS assumes no liability and is not responsible for infringement of patents and/or other intellectual or industrial property rights of third parties which may result from assistance provided by EMS.

EMS products are not designed, intended, authorized or warranted to be suitable for life support applications or any other life critical applications which could involve potential risk of death, personal injury or severe property or environmental damage.

EMS has committed our best effort to provide accurate information in this document, however we assume no responsibility for inaccuracies that may be contained herein, and we reserve the right to make changes to this document without notice.

EMS[©], Escort Memory Systems[™] and the EMS[©] logo are registered trademarks of Escort Memory Systems, a Datalogic Group Company. Other brand and product names mentioned are trademarks or registered trademarks of their respective holders.

Escort Memory Systems A Datalogic Group Company 170 Technology Circle Scotts Valley, CA 95066 Telephone (831) 438-7000 FAX (831) 438-5768

www.ems-rfid.com email: info@ems-rfid.com

Table of Contents

Chapt	ter 1 Introduction	
1.1	Introduction	. 1
1.2	Unpacking and Inspection	. 1
1.3	FCC Compliance	
	1.3.1 FCC Certifications	. 3
1.4	CE Statement	. 5
	1.4.1 CE Certification	
1.5	Changes and Modifications	. 6
Chapt	ter 2 Installation and Guidelines	
2.1	Dimensions	. 7
2.2	Installation	
	2.2.1 LRP2000-26 Antenna Assembly	11
Chapt	ter 3 Electrical Interface	
3.1	Connectors and Wiring	16
3.2	Antenna Cabling	
	3.2.1 Connecting Single Antenna System	
	3.2.2 Connecting a Dual Antenna System	
3.3	Data Terminal Blocks	
3.4	Power Supply Wiring	
3.5	RS232 Wiring	
3.6	RS422 Wiring and Termination	
3.7	Ethernet Wiring	
3.8	Digital I/O Circuitry	
	3.8.1 Inputs	
2.0	3.8.2 Outputs	
3.9	Master/Slave Configuration	
	3.9.1 Setting Jumper 32 on the Master	
	3.9.3 Setting Jumper J16 on the Slave	
Chan	ter 4 Communications Interface	30
•		
4.1	Configuring the Serial Interface	
	4.1.1 COM1	
	4.1.2 COM2	
4.0	4.1.3 Digital Board DIP Switch	
4.2	Optional Ethernet Interface	
4.3	Configuring the Ethernet Module for Network Communication	
	LED Indicators	40
Chapt	ter 5 Menu Configuration	
5.1	How to Enter the Menu Configuration	47
5.2	Set-Up Operating Parameters	48
	5.2.1 Set COM1 Parameters	48
	5.2.2 Set COM2 Parameters	48
	5.2.3 Set Operating Mode	
	5.2.4 Set RF Communication	
	5.2.5 Restore Factory Defaults	52

		5.2.6 Return to Main Menu 5	
	5.3	Download New Program	53
	5.4	Downloading DSP Firmware	53
	5.5	Exit to Operating Mode	54
Cł	napt	ter 6 RFID Communications	
_	-	Introduction	
	0.1	6.1.1 ABx Command Set Listings	
	6.0	Command Parameters	
	6.2	6.2.1 Command Timeout	
	6.0	6.2.2 Delay Between Duplicate Decodes	
	6.3	Multi-tag Command Parameters	
		6.3.1 Tag Repeat Count	
		6.3.2 Family Codes	
	0.4	6.3.3 Start Continuous Read	
	6.4	Standard ABx Protocol	
		6.4.1 ABxS Command 04H: Fill Tag	
		6.4.2 ABxS Command 05H: Read	
		6.4.3 ABxS Command 06H: Write	_
		6.4.4 ABxS Command 07H: Read Tag Serial Number	
		6.4.5 ABxS Command 08H: Tag Search	
		6.4.6 ABxS Command 0DH: Stop/Start Continuous Read	
		6.4.7 ABxS Command 14H: Get Memory Status	
		6.4.8 ABxS Command 16H: Write Family Code	
		6.4.9 ABxS Command 17H: Lock Family Code	
		6.4.10 ABxS Command 82H: SN Read All	
		6.4.11 ABxS Command 83H: Start/Stop Continuous SN Read All	
		6.4.12 ABxS Command 84H: Fill Tag All	
		6.4.13 ABxS Command 85H: Read All	
		6.4.14 ABxS Command 86H: Write All	
		6.4.15 ABxS Command 87H: Read Tag SN All	
		6.4.16 ABxS Command 88H: Tag Search All	
		6.4.17 ABxS Command 8BH: Write Family Code All	
		6.4.18 ABxS Command 8CH: Lock Family Code All	
		6.4.19 ABxS Command 8DH: Start/Stop Continuous Read All 8	
		6.4.20 ABxS Command 91H: Memory Lock All 8	32
		6.4.21 ABxS Command 94H: SN Fill	
		6.4.22 ABxS Command 95H: SN Read 8	35
		6.4.23 ABxS Command 96H: SN Write 8	36
		6.4.24 ABxS Command 10H: Set Output	
		6.4.25 ABxS Command 11H: Input Status	39
	6.5	ABx Fast Protocol	
		6.5.1 ABxF Command 04H: Fill Tag 9) 2
		6.5.2 ABxF Command 05H: Read	93
		6.5.3 ABxF Command 06H: Write) 4
		6.5.4 ABxF Command 07H: Read Tag Serial Number) 5
		6.5.5 ABxF Command 08H: Tag Search	
		6.5.6 ABxF Command 0DH: Start/Stop Continuous Read	
		6.5.7 ABxF Command 14H: Get Memory Status	
		6.5.8 ABxF Command 16H: Write Family Code	
		6.5.9 ABxF Command 17H: Lock Family Code	
		,	

		ABXF Command 82H: Read Data and SN All	
	6.5.11	ABxF Command 83H: Start/Stop Continuous SN Read All	. 103
		ABxF Command 84H: Fill All	
	6.5.13	ABxF Command 85H: Block Read All	. 107
	6.5.14	ABxF Command 86H: Block Write All	. 109
	6.5.15	ABxF Command 87H: Read Tag SN All	. 110
		ABxF Command 88H: Tag Search All	
	6.5.17	ABxF Command 8DH: Stop/Start Continuous Read All	. 113
	6.5.18	ABxF Command 91H: Memory Lock All	. 114
	6.5.19	ABxF Command 8BH: Write Family Code All	. 115
		ABxF Command 8CH: Lock Family Code All	
		ABxF Command 94H: SN Fill	
	6.5.22	ABxF Command 95H: SN Block Read	. 119
	6.5.23	ABxF Command 96H: SN Block Write	. 121
		ABxF Command 10H: Set Output	
		ABxF Command 11H: Input Status	
6.6		SCII Protocol	
	6.6.1	ABx ASCII Protocol Command Structure	. 126
	6.6.2		
6.7	ABx E	rror Codes	
	6.7.1	Multi-tag Error Codes	
	6.7.2	ABx Standard Error Codes	
	6.7.3	ABx Fast Error Codes	
	6.7.4		
	6.7.5	Multi-tag Command Error Code	. 131
\nnen	dix A S	Specifications	132
		Models and Accessories	
Appen	dix C A	ASCII Chart	.134

Introduction

1.1 Introduction

Escort Memory Systems' passive read/write system is a complete family of field-proven read/write Radio-Frequency Identification (RFID) products. The system consists of RFID tags, reader/writers, antennas, controllers, bus interfaces, and ancillary equipment. Tags can be attached to a product or its carrier, and act as an electronic identifier, job sheet, portable database, or manifest. Tags are read and updated through any non-conductive material while moving or standing still via an Escort Memory Systems Reader/ Writer.

Escort Memory Systems' LRP-Series long-range passive RFID system is the latest in our line of high performance, industrial RFID equipment. The passive design of the LRP read/write system uses the RF field from the antenna to power the tag, eliminating the need for tag batteries. The LRP passive read/write system is designed to provide cost-effective RFID data collection and control solutions to automation, item-level tracking, and material handling applications.

The LRP system uses the internationally recognized ISM frequency of 13.56 MHZ to power the tag and establish a radio link to transfer the information. The LRP2000 is specifically designed to work with LRP-Series passive tags, which provide 48 bytes of reprogrammable memory, and LRP-SISO-15693 compliant tags, which provide up to 8K bytes of reprogrammable memory.

NOTE: Published performance specifications are based on Philips ICODE SLi tags.

1.2 Unpacking and Inspection

Unpack the LRP2000 and documentation. Retain the original shipping carton and packing material, in case any items need to be returned. Inspect each item carefully for evidence of damage. If any item appears to be damaged, notify your distributor immediately.

The LRP2000 is delivered with the following components:

- LRP2000 Controller
- LRP2000 Antenna
- LRP2000 Operator's Manual on CD
- CBL-1475 controller-to-antenna cable assembly

The following user-supplied components are required for configuring a complete system:

- A host computer with RS232 serial interface for configuration
- A host computer with RS232, RS422, or Ethernet interface for operation (The Ethernet interface is available as an option on the LRP2000)
- AC power supply with 120VAC, 60 Hz or 230VAC, 50 Hz

1.3 FCC Compliance

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. It is the responsibility of the system installer to ensure that it is used in compliance with local regulations. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

1.3.1 FCC Certifications

TCB

GRANT OF EQUIPMENT AUTHORIZATION

TCB

Certification
Issued Under the Authority of the
Federal Communications Commission
By:

CKC Certification Services 5473A Clouds Rest Mariposa, CA 95338 United States

Date of Grant: 07/18/2003

Application Dated: 07/18/2003

Escort Memory Systems Inc 3 Victor Square Scotts Valley, CA 95066 United States

Attention: Norman Jones

Grant Notes

NOT TRANSFERABLE

EQUIPMENT AUTHORIZATION is hereby issued to the named GRANTEE, and is VALID ONLY for the equipment identified hereon for use under the Commission's Rules and Regulations listed below.

FCC IDENTIFIER: E36LRP2000

Name of Grantee: Escort Memory Systems Inc

Equipment Class: Part 15 Low Power Communication Device

Transmitter

Notes: Pass Through System

Frequency Output Frequency Emission
FCC Rule Parts Range (MHZ) Watts Tolerance Designator

CE 15C 13.56 - 13.56

CE: This device has shown compliance with the conducted emissions limits in 15.107, 15.207, or 18.307 adopted under FCC 02-157 (ET Docket 98-80). The device may be marketed after July 11, 2005, and is not affected by the 15.37(j) or 18.123 transition provisions.

CERTIFICATE OF EQUIPMENT AUTHORIZATION

Presented by:

CKC Certification Services 4933 Sierra Pines Drive Mariposa, CA 95338

47CFR Part 15

FCC Identification Number: E36LRP2000

Registration Number: E03-000068

Manufacturer: Escort Memory Systems Inc.

3 Victor Square

Scotts Valley, CA 95066 Phone: 831-438-7000 Fax: 831-438-5768

Product Description: Pass Thru System

FCC Rule Parts: FCC Part 15.225

Frequency Range of operation(MHz): 13.56MHz

Approval Date: July 18, 2003

CKCCS Committee Chairman

Steve 7 Below

CE Statement 1.4

This product complies with the European Community's CE standards and has been tested and certified to meet the required standards, EN 300 3300-2 and EN 301 489-3. It is the responsibility of the system installer to ensure that it is used in compliance with local regulations. Modifying the antenna or controller, or connecting other antennas will void this compliance and is in violation of law.

1.4.1 CE Certification

DECLARATION OF CONFORMITY

Escort Memory Systems hereby declares that the equipment specified below has been tested and found compliant with the following Directives and Standards:

Directives:

EN 300 330-2

EN 301 489-3

Standards:

ETSI EN 300 330-1 V1.3.1 (2001-06) ETSI EN 300 330-2 V1.1.1 (2001-06)

ETSI EN 301 489-1 V1.4.1 (2002-08) ETSI EN 301 489-3 V1.3.1 (2001-11)

Test Reports:

ETS03-025A

ETS03-025B

Equipment Type: RFID Tag Reader/Writer

Products:

LRP2000-26; LRP2000-23

Scotts Valley, November 11, 2003

Scott Balzer

Engineering Manager

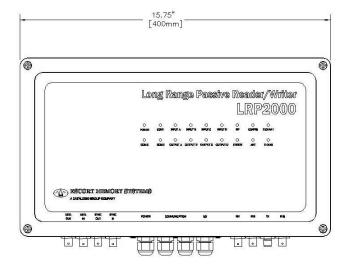
Russ Barber

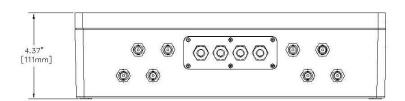
RF Design Engineer

Escort Memory Systems 170 Technology Circle Scotts Valley, CA 95066

USA

1.5 Changes and Modifications


Any changes or modifications to the LRP2000 not expressly approved by Escort Memory Systems could void the user's authority to operate the equipment.



Installation and Guidelines

2.1 Dimensions

Figure 1 gives the dimensions for the LRP2000 controller.

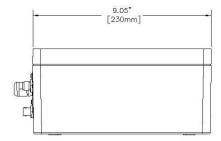


Figure 1: LRP2000 Dimensions

Figure 2 shows the LRP2000 mounting hole locations.

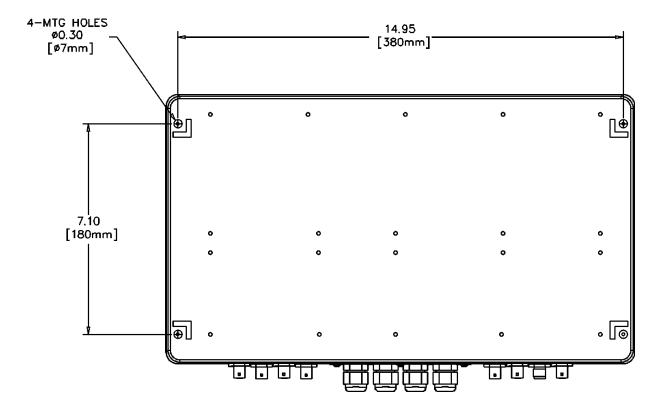
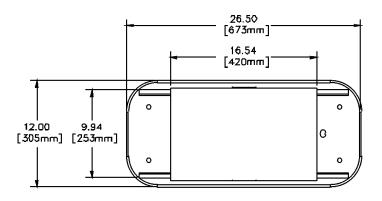
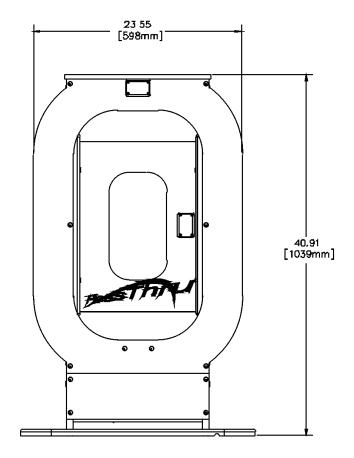




Figure 2: LRP2000 Mounting Hole Locations and Dimensions

Figure 3 gives the dimensions for the LRP2000-23 antenna

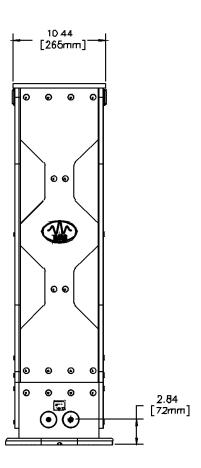
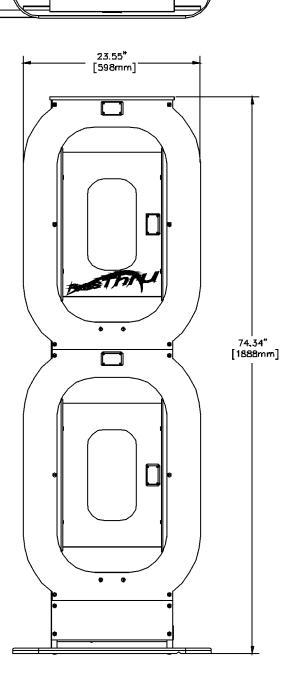



Figure 3: LRP2000-23 Antenna Dimensions

26.50" [673mm] 16.54" [420mm] 0

Figure 4 gives the dimensions for the LRP2000-26 antenna.

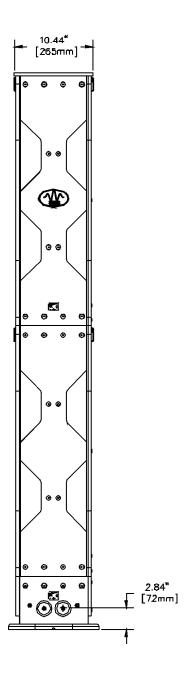


Figure 4: LRP2000-26 Antenna Dimensions

2.2 Installation

Antenna Environment

Electromagnetic radiation and the presence of metal within the reading field of the antenna affect the range of the LRP2000. Mount the antenna to minimize the impact of these factors.

Installing the Antenna

Once a suitable location is selected for the LRP2000 antenna, the structure should be securely bolted to the floor using the holes provided in the base. The dimensions for the antenna bolt pattern are shown in Figure 5.

Mount the antenna at least 36" away from large metal objects. The antenna emits RF fields from both sides. Avoid placing metal in front of or behind the antenna.

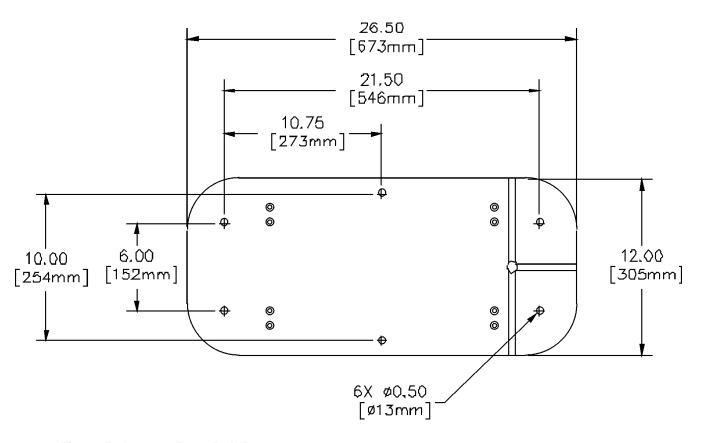


Figure 5: Antenna Base Bolt Pattern

2.2.1 LRP2000-26 Antenna Assembly

The LRP2000-26 antenna is shipped in two parts. The following instructions describe how to correctly assembly an LRP2000-26 antenna.

CAUTION: If you are assembling more than one LRP2000-26, you must assemble halves with matching serial numbers. The complete antenna is tuned at EMS before shipping and mis-matching the halves will degrade performance.

To assemble the LRP2000 antenna:

1. Place the base half on a flat surface and note the position of the green dots shown in Figure 6.

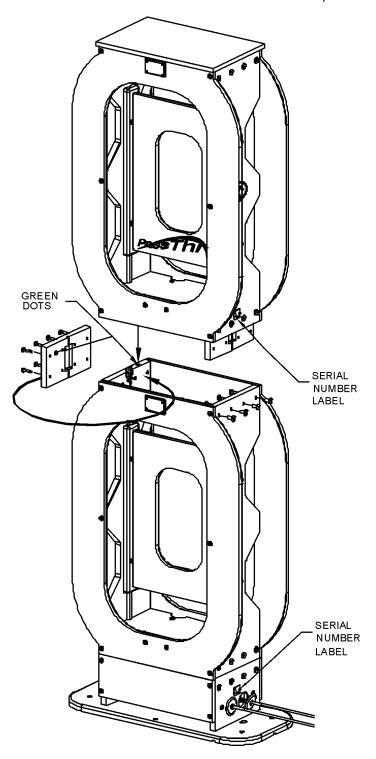
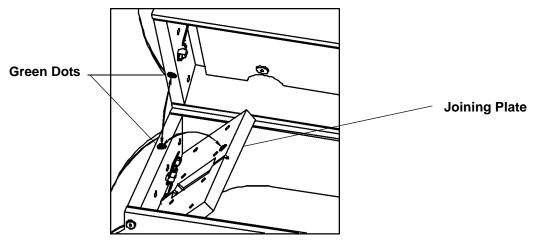
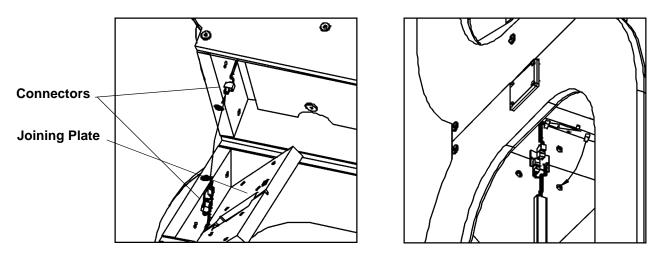
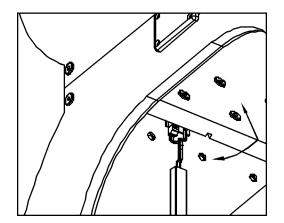


Figure 6: Green Orientation Dots Location

2. Align the halves according to the green dots and place the top half of the antenna on the base half. See Figure 7. Check that the halves have matching serial numbers (see Figure 6).


Figure 7: Green Dot Alignment

3. Make the electrical connection between the two halves as shown in Figure 8.

Figure 8: Antenna Electrical Connection

4. Slide the joining plate into place from below and secure the top row of fasteners. Make sure you do not bind the connector or wire under the joining plate.

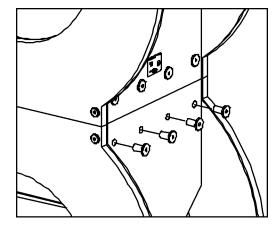


Figure 9: Joining Plate and Fasteners

- 5. Repeat on the other side of the antenna.
- 6. Fasten the bottom row of joining plate connectors on both sides.
- 7. Connect the cables to the LRP2000 and slide the over the connector as shown in Figure 10.

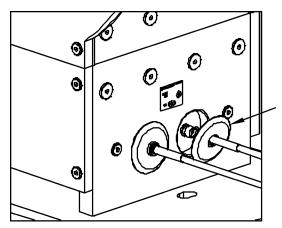


Figure 10: Antenna Cables and Seals

Figure 11 shows a completed LRP2000-26 antenna.

Figure 11: Completed LRP2000-26 Antenna

Electrical Interface

3.1 Connectors and Wiring

Figure 12 shows the front connector panel with the four strain reliefs and the RF connectors. The controller ships with sealing plugs in the strain reliefs. For an environmental seal, leave these plugs in place for any unused location.

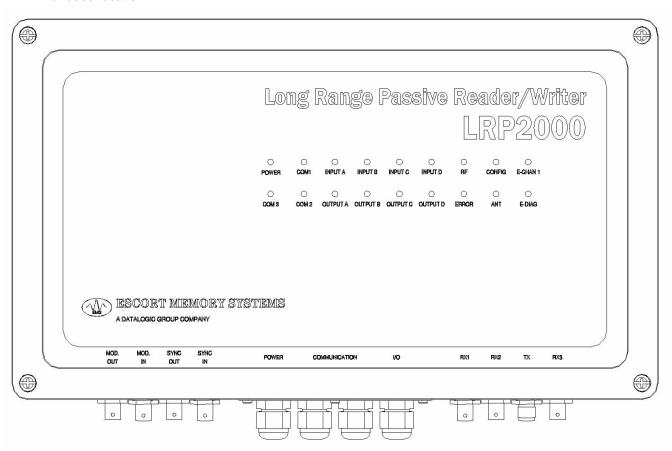


Figure 12: RF Connectors and Strain Relief

The four strain reliefs can seal cables ranging in diameter from 0.12" [3.0 mm] minimum to 0.32" [8.0mm] maximum diameter.

Figure 13 shows an internal view of the controller. It details the locations of all internal terminal blocks needed for wiring the system.

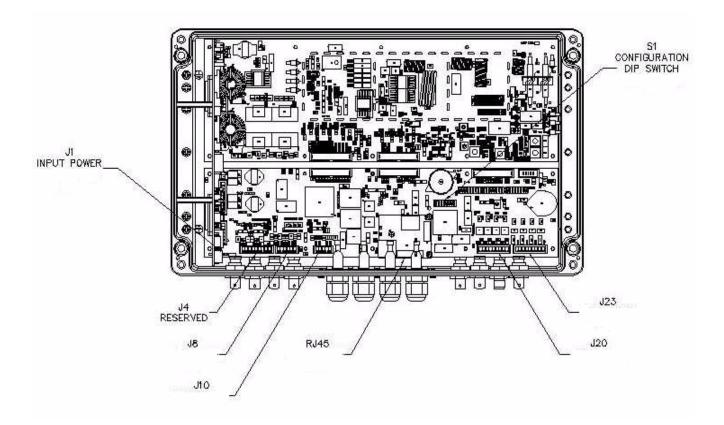


Figure 13: Internal Connectors

CAUTION: The controller contains ESD-sensitive components. Always observe ESD-sensitive handling procedures when working inside the controller.

Terminal Blocks

The controller is equipped with removable terminal blocks to aid wiring. The data terminals are all equipped with screw terminals, which accept AWG 28 minimum to AWG 16 maximum diameter solid or stranded wire. The screw heads accept a 3/32 inch [2.0 mm] or [2.5 mm] screwdriver blade.

3.2 Antenna Cabling

Figure 14 shows the two antenna connectors at the base of the LRP2000 antenna.

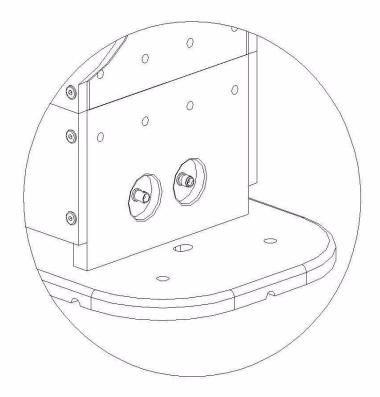


Figure 14: Antenna Connectors

Connect one end of the antenna cable assembly, CBL-1475, to the antenna connectors at the base of the antenna. Mate the connectors at the opposite end of the cable assembly to the corresponding RF connector on the controller. The cable assembly has two different types of RF connectors, one threaded TNC and one bayonet-style BNC. The controller has one TNC and seven BNC connectors. The BNC connector of the antenna cable assembly must only be connected to the controller connector for single antenna systems.

CAUTION: The antenna cables must be properly connected to both the controller and the antenna at any time that power is applied to the controller. Failure to properly connect the controller to the antenna can cause damage to the unit. Connecting the controller to any antenna other than the LRP2000 antenna can not only damage the controller, but void the your authority to operate the LRP2000.

3.2.1 Connecting Single Antenna System

Figure 15 shows how to connect the LRP2000 and antenna in a single antenna configuration.

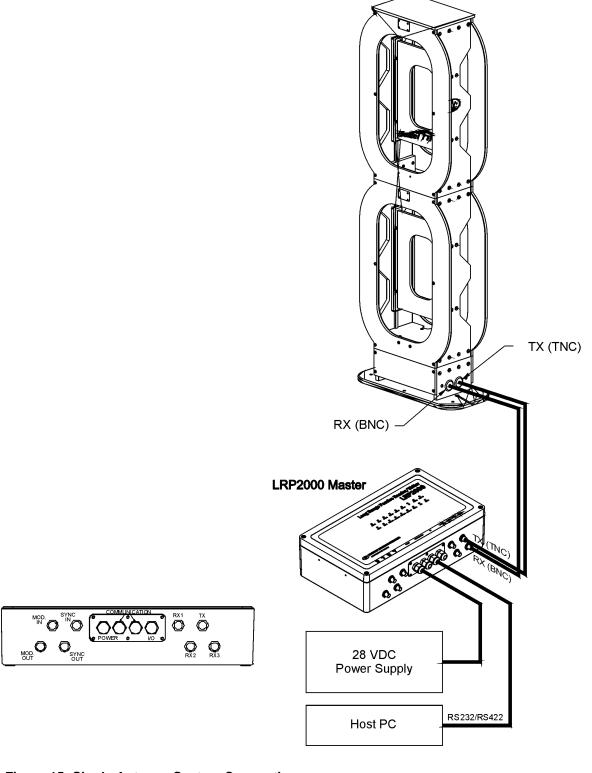


Figure 15: Single Antenna System Connections

3.2.2 Connecting a Dual Antenna System

In dual antenna systems, one LRP2000 serves as the master and the other acts as the slave. Figure 16 shows how to connect two LRP2000s in a master/slave configuration.

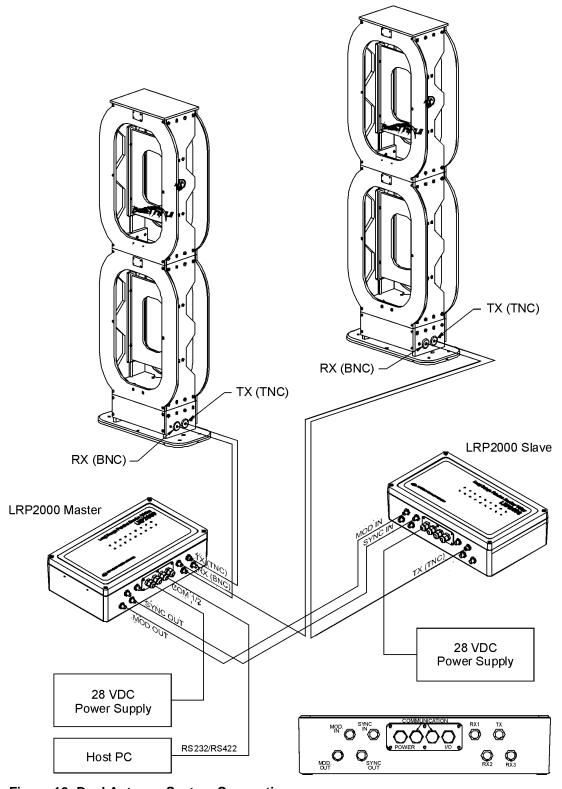


Figure 16: Dual Antenna System Connections

3.3 Data Terminal Blocks

Figure 17 shows the LRP2000 RS232 terminal block J8, and a detail view the terminal arrangement.

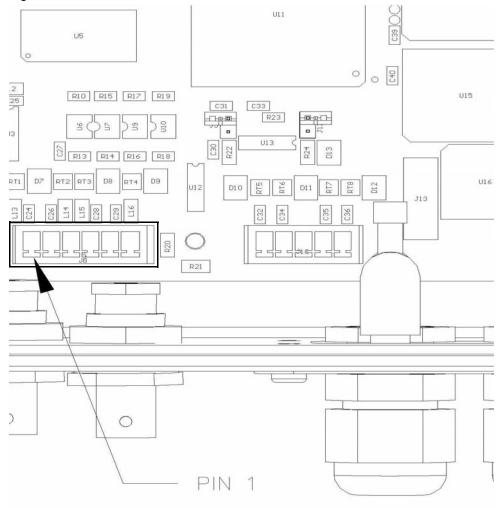


Figure 17: J8 COM1 RS232/COM2 RS232

Table 1 lists the RS232 pinouts.

Table 1: RS232 Pinouts, J8 Terminal Block

J8 Pin Number	Interface	J8 Signal Name	DB9 Pin Number	DB25 Pin Number
1	COM1	RS232 RX	3	2
2	COM1	RS232 TX	2	3
3	COM1	RS232 GND	5	7
4	COM2	RS232 RX	3	2
5	COM2	RS232 TX	2	3
6	COM2	RS232 GND	5	7

NOTE: The signal names given in Table 1 refer to the signals from the LRP2000, not from the host. The DB9 and DB25 pin numbers are from standard RS232 connectors.

Figure 18 shows the LRP2000 COM1 RS422 terminal block, J10, and a detail view illustrating the arrangement of the terminals.

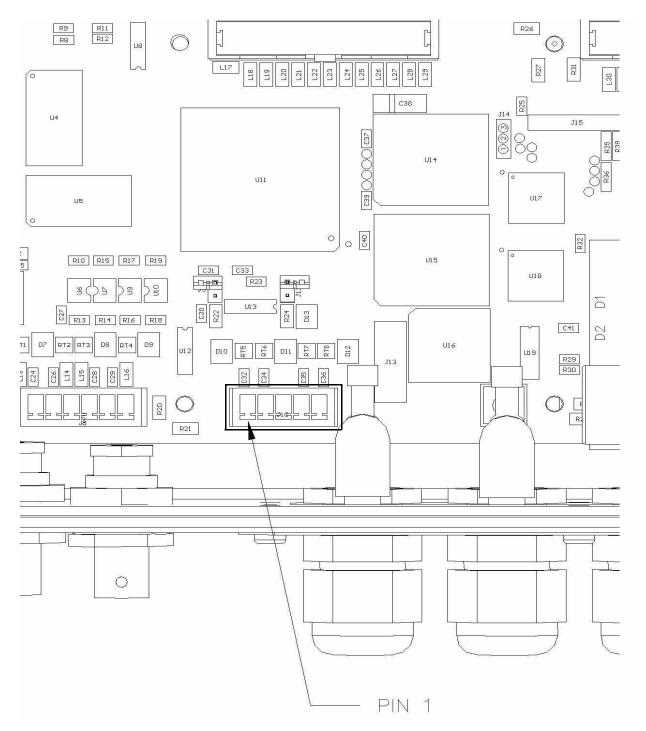


Figure 18: J10 COM1 RS422

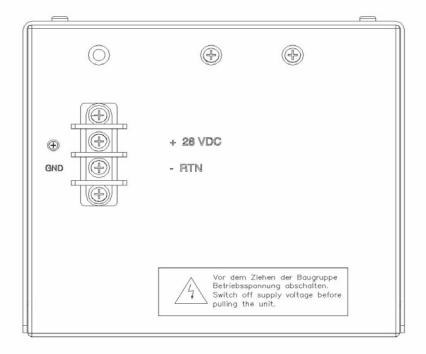
Table 2: J 10 Pinout

J10 Pin Number	Signal Name	Polarity	Description
1	TX -	- Negative	Transmits data to host
2	TX +	+ Positive	Transmits data to host
3	GND	Neutral	Signal reference
4	RX -	- Negative	Receives data from host
5	RX +	+ Positive	Receives data from host

The signal names given in Table 2 refer to the signals from the LRP2000, not the signals from the host.

3.4 Power Supply Wiring

CAUTION: The antenna cables must be properly connected to both the controller and the antenna at any time that power is applied to the controller. Failure to properly connect the controller to the antenna can cause damage to the unit. Connecting the controller to any antenna other than the LRP2000 antenna can not only damage the controller, but can void your authority to operate the LRP2000.


Loosen the terminal screws on the terminal block of the power supply and connect the spade lugs of Cable CBL-1474 to the terminals according to Table 3. Strip 1/4 inch from the opposite ends of the cable assembly and connect to the input power terminals according to Table 3.

CAUTION: Only after all internal connections are completed should the LRP2000 power supply be connected to the AC mains.

Table 3: Input Power Pinout

Power Supply Connector	Wire color	LRP2000 Connector Pin Number
+28	RED	3
- RTN	BLACK	2
GND	Tin	1

Figure 19 shows the LRP2000 power supply and spade lugs.

Figure 19: Input Power Supply Lugs

Figure 20 shows the LRP2000 input power terminals.

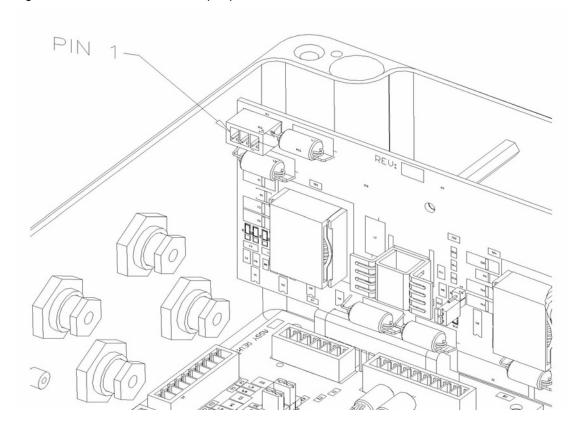


Figure 20: 28 VDC Input Power Terminals

3.5 **RS232 Wiring**

The recommended cable type for RS232 communication is Belden part number 9941. Specifications for Belden cables can be found at WWW.BELDEN.COM.

3.6 RS422 Wiring and Termination

In installations where long cable runs must be used, or in noisy environments, RS422 is the communications standard of choice for point-to-point serial communications. The recommended cable types are Belden p/n 3084A, or Belden p/n 3082A. For long cable lengths, make sure you consider voltage drop over the length of the cable, and use cable of an adequate gauge.

NOTE: The RS422 receiver within the LRP2000 controller has fail-safe protection circuitry, which eliminates the need for any pull-up or pull-down resistors on the RS422 lines.

3.7 Ethernet Wiring

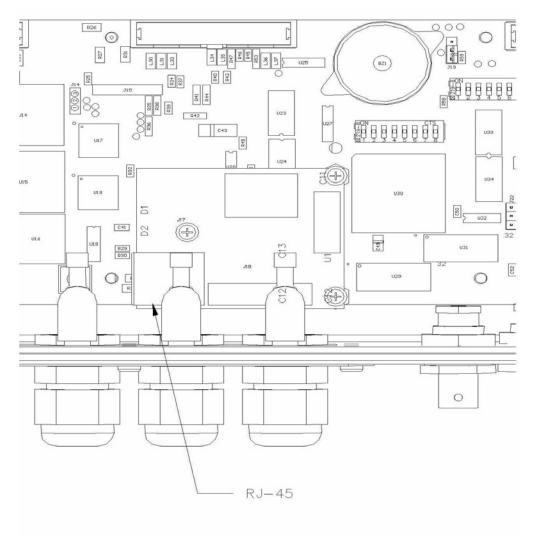


Figure 21: RJ-45 Connector on the Optional Ethernet Module

Because of the narrow size of the strain reliefs on the LRP2000, the standard RJ-45 connector cannot be inserted through the strain relief. EMS recommends that you loosen the nut on the strain relief, feed through the cable, and crimp the connector in place. After the connector is crimped onto the cable, the cable can be connected to the Ethernet module, and the excess cable withdrawn from the unit before tightening the strain relief. EMS recommends stranded shielded CAT5e cable for Ethernet wiring.

Ethernet capability is an optional upgrade. Contact your EMS dealer for inquiries about availability of this option and upgrade.

3.8 Digital I/O Circuitry

Both the digital inputs and digital outputs are optically isolated circuits with no common path between any channel terminal and another channel, or between any channel and the LRP2000 power. Because they are independent and floating, the external wiring controls their use. The inputs can be configured for sensors with a PNP or NPN output. The outputs can be configured in a sourcing or sinking configuration. The examples in Figure 24 through Figure 31 show different connections for common input and output devices.

3.8.1 Inputs

The +IN terminal must be at a higher positive potential than the -IN terminal for current to be sensed correctly. The voltage range is 4.5 to 30V between the +IN and the -IN inputs, and the maximum current is 25 mA.

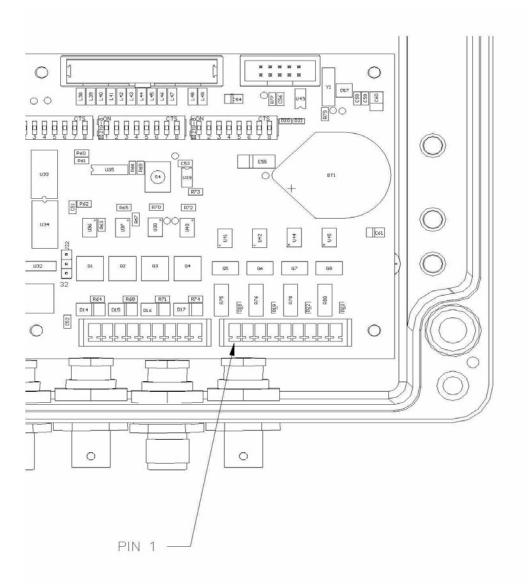


Figure 22: J23 Input Connector

Table 4: Input Connector Pinout

Connector Pin Number	Signal Name	Polarity
1	+ IN A	Positive
2	- IN A	Negative
3	+ IN B	Positive
4	- IN B	Negative
5	+ IN C	Positive

Table 4: Input Connector Pinout

Connector Pin Number	Signal Name	Polarity
6	- IN C	Negative
7	+ IN D	Positive
8	- IN D	Negative
9	GND	Neutral

3.8.2 Outputs

The output is limited to 30 VDC when off and 500 mA. These are maximum ratings. A device that operates at 200 mA may destroy the output due to inrush current if that current exceeds 500 mA (such as an incandescent light). The inductive kick (back EMF from a collapsing magnetic field) when a relay is released can impose a voltage higher than 30 V and destroy the output transistor (use a backwards diode to clamp the back EMF).

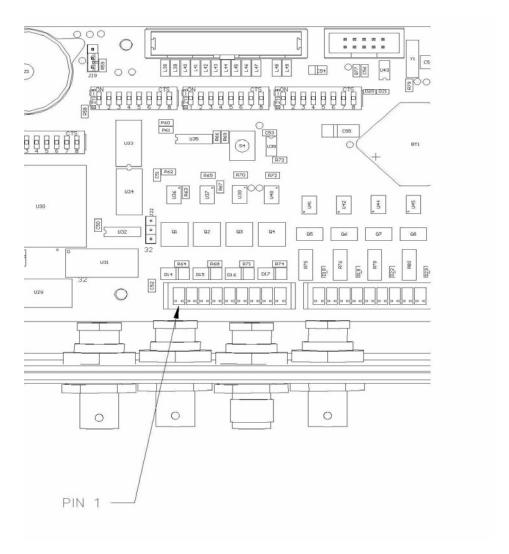


Figure 23: J20 Output Connector

Table 5: Output Connector Pinout

Terminal Number	Signal Name	Polarity
1	+ OUT A	Positive
2	- OUT A	Negative
3	+ OUT B	Positive
4	- OUT B	Negative
5	+ OUT C	Positive
6	- OUT C	Negative
7	+ OUT D	Positive
8	- OUT D	Negative
9	GND	Neutral

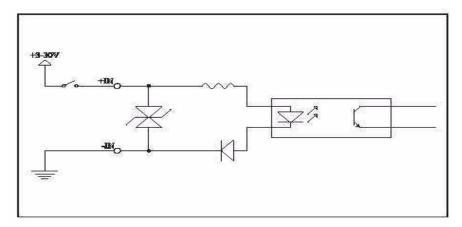


Figure 24: Input from Sourcing Contact

Figure 24 shows the switch on the high side with the low side grounded. As this is a "Dry" contact (the current is limited to 15 mA), a high-quality sealed switch should be used.

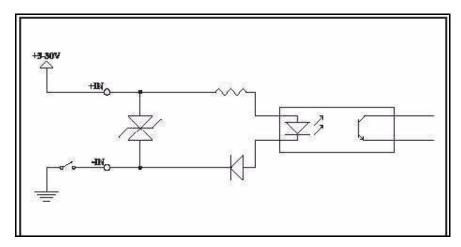


Figure 25: Input from Sinking Contact

Figure 25 shows a switch connected on the low side with the high side connected to the positive supply. This also requires a high-quality sealed contact.

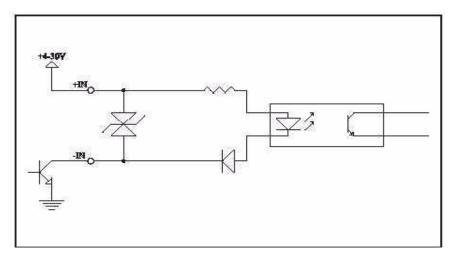


Figure 26: Input from NPN Sensor

Figure 26 shows an Open Collector NPN output from a photosensor switching to ground. It can be wired as a sinking or low-side contact.

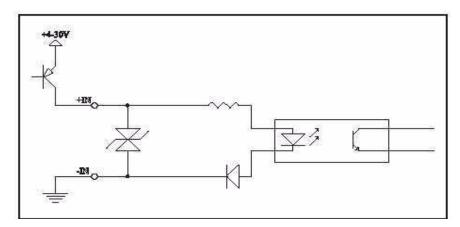


Figure 27: Input from NPN Sensor

Figure 27 shows an Open Collector PNP output from a photosensor switching to a positive supply. It can be wired as a sourcing or high-side contact.

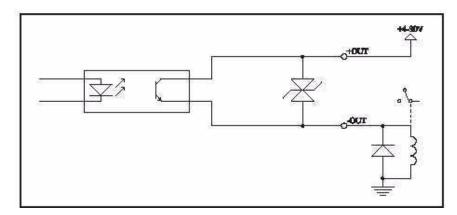


Figure 28: Sourcing Output 'Contact

Figure 28 shows a relay connected as a current sourcing "Contact." The relay is grounded and the +OUT terminal goes to the positive supply. The diode across the relay coil is essential to protect the output circuit and reduce noise along the wiring. It should be connected at the relay to minimize the length of wiring that could radiate noise. A 1N4001 or similar diode may be used.

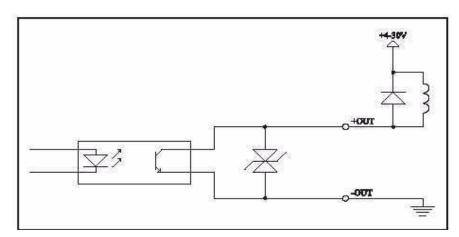


Figure 29: Sinking Output 'Contact

Figure 29 shows a "Contact" sinking current from a relay. The -OUT terminal is grounded and the relay goes to the positive supply. This configuration must also have a diode across the relay coil to protect the circuit and reduce noise.

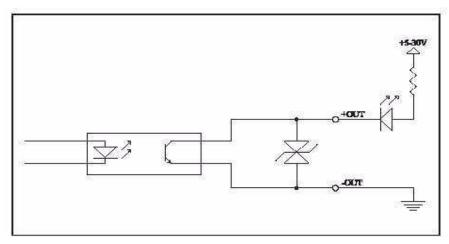


Figure 30: Sinking Output LED Driver

In Figure 30, the LED and current limiting resistor are in series between the positive supply and the +OUT terminal. The -OUT terminal is grounded. The resistor in series with the LED sets the forward current.

1.2 K provides 20 mA LED current when run from 24 VDC.

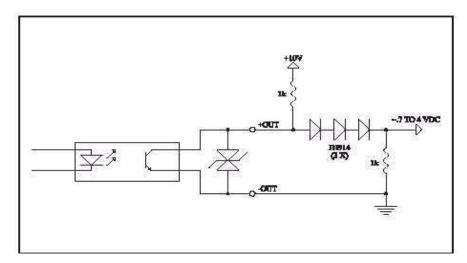


Figure 31: Output to TTL or CMOS LogicIn

In Figure 31, the output acts as an Open Collector. This provides a TTL or CMOS compatible signal when a 1 K to 10 K pull-up to +5 Vdc (the logic supply) is used.

3.9 Master/Slave Configuration

You can use the LRP2000 in a single or dual antenna configuration. All LRP2000s are set by default to be master controllers for single antenna systems. For dual antenna systems, you must make one jumper change to the master and change the second controller to a slave.

To change an LRP2000 to act as a slave, you need to perform the following tasks:

- Move a shunt from jumper J34 to jumper J32 (master LRP200).
- Make DIP switch setting changes to DIP switch banks S1 and S2 (slave LRP200).
- Change the location of jumper J16 (slave LRP200).

The following sections describe how to make these changes.

3.9.1 Setting Jumper 32 on the Master

You must make one jumper change to the LRP2000 you have selected to be the master.

To set jumper 32 for a dual antenna master:

- 1. Verify that power to the LRP2000 is off.
- 2. Locate jumper 32 and jumper 34 as shown in Figure 32.

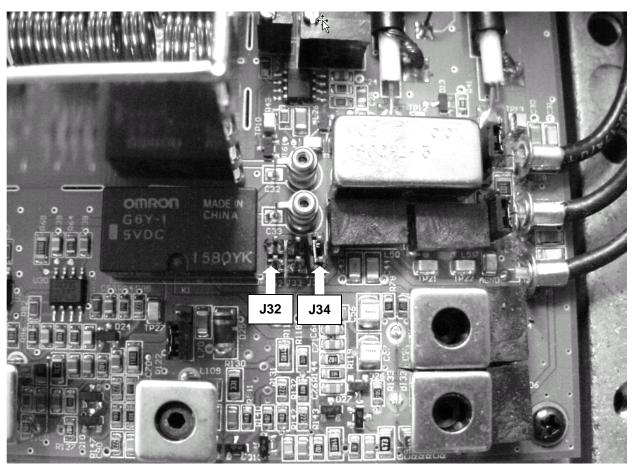


Figure 32: Jumpers 32 and 34

3. Remove the shunt from jumper 34 and place it over jumper 32.

3.9.2 DIP Switch Settings on the Slave

To set a LRP2000 to operate as a slave in a dual antenna installation, you must change the settings of DIP switch banks S1 and S2.

For reference, Table 6 shows the settings for a master LRP2000. The correct settings for switch banks S3 and S5 are also shown. Figure 33 shows the locations of the switch banks.

Table 6: Master DIP Switch Settings

Bank	Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8
S1	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF
S2	ON	ON	OFF	ON	OFF	OFF	OFF	ON
S3	OFF	ON	ON	ON	OFF	OFF	ON	ON
S5	ON							

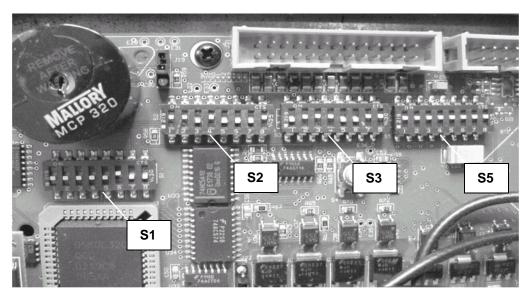


Figure 33: DIP Switch Banks S1, S2, S3, and S5

To change the switches to a slave configuration, make the changes highlighted in Table 7. Make sure power to the LRP2000 is off before changing DIP switch settings.

Table 7: Slave DIP Switch Settings

Bank	Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8
S1	OFF							
S2	ON	OFF	ON	ON	OFF	OFF	OFF	ON
S3	OFF	ON	ON	ON	OFF	OFF	ON	ON
S 5	ON							

NOTE: Do not make any changes to switch bank S3 and S5.

3.9.3 Setting Jumper J16 on the Slave

Jumper J16 is a three-pole jumper located under the transmitter shield.

To change the J16 jumper to the slave setting:

- 1. Verify that power to the LRP2000 is off.
- 2. Straighten the tabs retaining the transmitter shield and remove the shield. jumper J16 is located on the left side of the first compartment.
- 3. Move the J16 shunt from the up position (pins 1 and 2) to the down position (pins 2 and 3). See Figure 34 below.

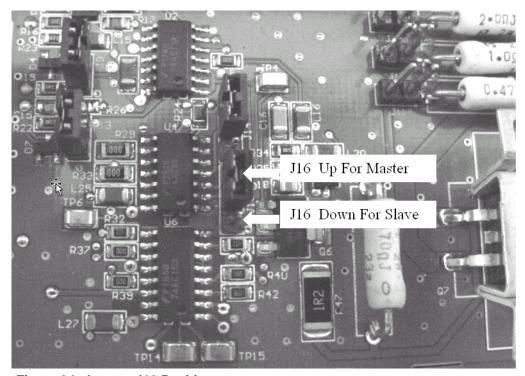


Figure 34: Jumper J16 Position

4. Replace the transmitter shield and fold over tabs to lock the shield in place.

Communications Interface

4.1 Configuring the Serial Interface

4.1.1 COM1

In normal use for reading and writing RFID tags, communications with the LRP2000 occurs via the main communications interface, COM1. This communications interface can be accessed by both point-to-point and addressed serial communications protocols. For point-to-point serial communication, the LRP2000 supports RS232 and RS422 as the standard protocols. For multiplexed communications, Ethernet is available as an option. The RS422 interface is especially suited for long cable lengths, and for noisy environments.

NOTE: The delay between the characters sent to the controller cannot be longer than 200 ms.

The options for each configuration parameter for the COM1 interface are listed in Table 8.

Table 8: COM1 Parameters

Baud rate	1200, 2400, 4800, 9600, 19200, 38400 bps	
Number of Data Bits	7, 8	
Number of Stop Bits	1	
Parity	Even, Odd, None	
Flow Control	None, Xon/Xoff	

The default configuration parameters for COM1 are listed in Table 9.

Table 9: COM1 Defaults

Baud rate	9600 bps
Number of Data Bits	8
Number of Stop Bits	1
Parity	None
Flow Control	None

4.1.2 COM2

For the purpose of configuring the controller's operating parameters, communication occur via the auxiliary communications interface, COM2. This auxiliary interface only communicates via RS232 and is reserved for configuring and updating the operating parameters, and for updating the firmware in the controller. For example, with the correct hardware dip switch settings, the COM2 interface can be used to configure the parameters of the COM1 interface. The electronics of this interface are also optically isolated from the other circuits of the controller.

The communication options for the COM2 interface are listed in Table 10.

Table 10: COM2 Parameters

Baud Rate	1200, 2400, 4800, 9600, 19200 bps	
Number of Data Bits	7, 8	
Parity	Even, Odd, None	
Flow Control	None, Xon/Xoff	

The default configuration parameters for COM2 are listed in Table 11.

Table 11: COM2 Defaults

Baud Rate	9600 bps
Number of Data Bits	8
Number of Stop Bits	1
Parity	None
Flow Control	None

4.1.3 Digital Board DIP Switch

The digital board is mounted inside the LRP2000 enclosure closest to the wall with the cable entries. The first five switches of the main board set the COM1 baud rate, electrical interface, and the download options for COM2. SW6, SW7 and SW8 are not used and should remain OFF. When SW1 and SW2 are both set ON, the baud rate is set via the Configuration Menu. Table 12 lists the possible switch settings for typical applications.

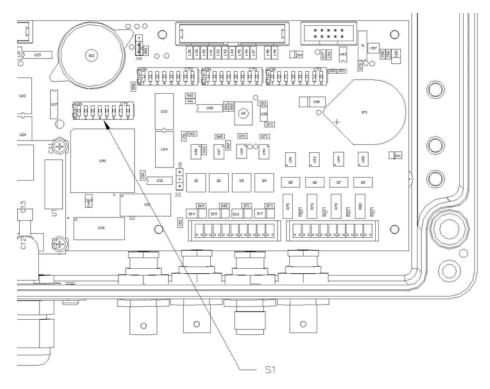


Figure 35: Configuration Dip Switch, S1

Figure 35 shows the location of the digital board dip switches, and hardware reset switch. It also includes a detail view of the dip switch array, which indicates the arrangement of the switches from left to right and the "ON" and "OFF" directions.

Table 12: Dip Switch Settings

Baud Rate		Interface		Download/ Restore Defaults	
SW1	SW2	SW3	SW4	SW5	Settings
OFF	OFF	*	*	OFF	9600 BAUD
ON	OFF	*	*	OFF	19200
OFF	ON	*	*	OFF	38400
ON	ON	*	*	OFF	Set from Configuration Menu
*	*	OFF	OFF	OFF	RS232
*	*	ON	OFF	OFF	RS422
IGNORED	IGNORED	IGNORED	ON	OFF	Ethernet

Table 12: Dip Switch Settings

Baud Rate		Interface		Download/ Restore Defaults	
IGNORED	IGNORED	ON	ON	OFF	Reserved
OFF	OFF	OFF	OFF	OFF	Disabled
IGNORED	IGNORED	IGNORED	IGNORED	ON	Download / Restore Defaults

NOTE: By setting SW5 ON to enable download, the default parameters will first be restored and saved to the non-volatile memory, erasing the previously stored communication and operating parameters. These parameters will take effect after a hard reset or a power-on reset. A hard reset is invoked by depressing the hard reset switch, holding for one second, and releasing. The hard reset switch is shown in Figure 35.

The baud rate, as determined by SW1 and SW2, only applies to the COM1 serial interface. When the optional Ethernet interface is selected by setting SW4 to the "ON" position, the baud rate is set automatically for Ethernet communication, and SW1 and SW2 are ignored.

The communication parameters for COM2 can only be changed by menu configuration. Because COM2 is an auxiliary interface, the default parameters for COM2 are sufficient for the infrequent use of this interface, and should not be changed. For example, if a user changes to a faster baud rate on COM2, a problem can occur when trying to re-establish communication at a later date. Because there is no obvious indication that the baud rate has been changed, the next operator would likely try to reconnect at the default, 9600 baud, and would be unable to connect. The quickest way to re-establish communication is to set SW5 ON and reset, then set SW5 OFF and reset again. This will overwrite all the communication parameters on COM2 and allow the operator to connect, but it also overwrites all the information for COM1, as well as the RFID parameters. The best practice is always to use the defaults for COM2.

4.2 Optional Ethernet Interface

As an alternative to the RS232 and RS422 interfaces, COM1 of the LRP2000 can be configured to communicate on Ethernet networks. This option can be fulfilled by Escort Memory Systems' Ethernet module. To configure the LRP2000 COM1 to communicate via Ethernet, set SW4 ON. This correctly sets all communication parameters between the Ethernet module and the controller. Section 4.3 details the configuration of the Ethernet module for network

4.3 Configuring the Ethernet Module for Network Communication

Once wired correctly, the Ethernet Module must be configured to communicate on a network of computers and peripherals. This can be accomplished by connecting the controller's RJ-45 jack directly to the NIC on a PC through a crossover cable. Alternatively, the Ethernet module can be connected directly to a router of a LAN. This can cause serious problems if another device on the network has the same IP address.

The Default IP Address

The default IP address of all LRP2000 controllers is set to 192.168.253.222 at the factory. In order to avoid IP address conflicts, the unit must be assigned a unique IP address before it is installed for operation. For configuration, the Ethernet module provides an interactive web page to update addresses.

NOTE: If connecting directly from the NIC on a PC, under some operating systems with dynamic IP allocation, it is necessary to fix the IP address of the PC to ensure that the IP address will not change during configuration.

Once connected, apply power to the LRP2000 and direct the PC's web browser to http://192.168.253.222. The page shown in Figure 36 is displayed while the interface pages load.

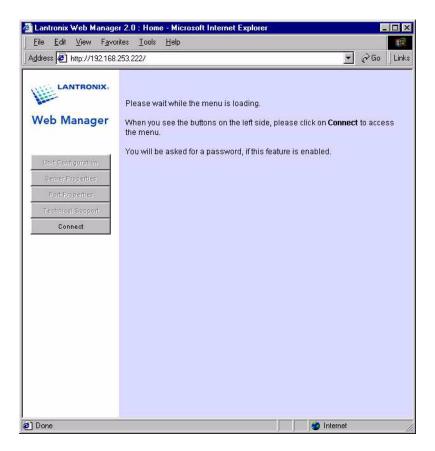


Figure 36: Menu Loading Page

Lantronix Web Manager 2.0 : Home - Microsoft Internet Explorer _ 🗆 × File Edit View Favorites Tools Help ▼ @Go Links Address Address Address Address Address Address LANTRONIX. Server Configuration Web Manager Product Lantronix Universal Device Server Model Ethernet 1 Channel Firmware Version V4.40 Unit Configuration Serial Number 7401558 Server Properties Hardware Address 00-20-4A-74-06-16 Port Properties IP Address 192.168.253.222 Subnet Mask 255.255.255.0 Technical Support Gateway Address 192.168.253.1 Update Settings **Port Configuration** Channel 1 Local Port Number 10001 Serial Port Speed 19200 Flow Control 00 Interface Mode 4C Connect Mode CO Disconnect Mode 00 Flush Mode 00 UDP Datagram Type Disabled Pack Control Byte Disabled

Click "Connect" to see the current configuration of the module as shown in Figure 37.

Figure 37: Configuration Page

Done

Internet

To change the IP address, click "Server Properties" from the menu on the left. This loads the Server Properties page as shown in Figure 38.



Figure 38: Server Properties Page

Click the "Edit" button next to the IP address field to display a separate window. Type or paste in the desired IP address and press "Enter." Follow the same procedure to change the Subnet Mask and the Gateway Address. After all of the desired parameters are entered correctly, click "Update Settings" from the menu on the left. This downloads the configuration parameters to the Ethernet Module.

After these steps are completed, reset the LRP2000. The Ethernet module is ready for network communication directed to its new IP address.

4.4 LED Indicators

The LRP2000 has 18 LED indicators conveniently located on the lid to indicate the operating status of the controller. The locations of the LED indicators are shown in Figure 39.

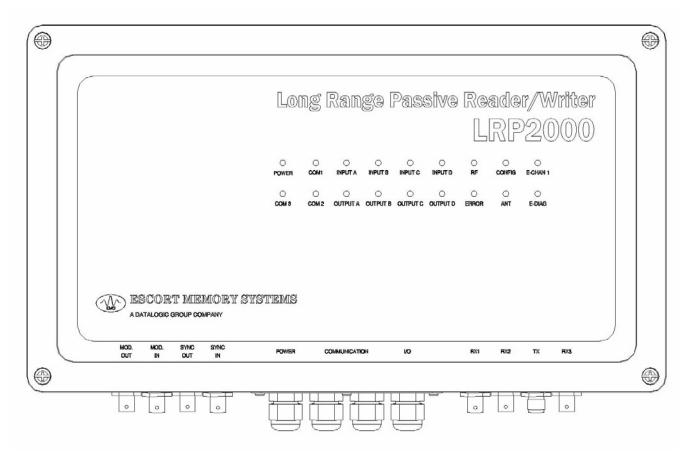


Figure 39: LED Indicators

Table 13: LED Indicators

LED	Color	Meaning	
POWER	RED	The LRP2000 is receiving power	
COM1	GREEN / RED	RED: Incoming data on COM1 RS232 RX GREEN: Outgoing data on COM1 RS232 TX and COM1 RS422 Y and Z	
INPUT A	YELLOW	The Input is active	
INPUT B	YELLOW	The Input is active	
INPUT C	YELLOW	The Input is active	
INPUT D	YELLOW	The Input is active	
RF	GREEN	RF data transfer	
CONFIG	GREEN	Flashes green for 0.5 seconds to indicate the successful execution of an ABx command	
E-CHAN 1		Lights solid to indicate that the Ethernet connection is idle. Blinks to indicate that the Ethernet module is connected and active	
COM2	GREEN/RED	RED: Incoming data on COM2 RS232 RX GREEN: Outgoing data on COM2 RS232 TX	
COM3	GREEN/RED	RED: E-Chan-1 GREEN: E-Diag	

Table 13: LED Indicators

LED	Color	Meaning
OUTPUT A	GREEN	Output A active
OUTPUT B	GREEN	Output B active
OUTPUT C	GREEN	Output C active
OUTPUT D	GREEN	Output D active
ERROR	RED	Flashes red for 0.5 seconds to indicate the unsuccessful execution of an ABx command
ANT	RED	Antenna is transmitting
E-DIAG		Blinks in combination with E-CHAN 1 LED to provide diagnostic information. See explanation below.

Flashing LED Signals

Flashing LED indicators, or combinations of flashing LED indicators, are used to indicate certain controller states, or transitions from one state to another.

ERROR LED - 4 Flashes

The ERROR LED alone flashes four times to indicate that the controller is entering the download routine. This indicates that SW5 is in the "ON" position during a power-on or hard reset. With a terminal correctly configured and connected to COM2, the download menu is displayed.

ERROR and CONFIG LEDs - 4 Simultaneous Flashes

The ERROR and CONFIG LEDs flash simultaneously four times to indicate that (CTRL-D) has been received within the first seven seconds of power-on or hard reset. With a terminal correctly configured and connected to COM2, the configuration menu is displayed.

ERROR and CONFIG LEDs - 4 Alternating Flashes

The ERROR and CONFIG LEDs alternately flash four times to indicate that the controller is entering operating mode and is ready to receive commands on COM1.

E-DIAG and E-CHAN 1 Ethernet Module diagnostic codes

The E-DIAG LED lights solidly to indicate the following errors. These errors can be identified by the number of times that the E-CHAN 1 LED blinks.

Number of Blinks	Error
1	EPROM Checksum Error
2	RAM Error
3	Network Controller Error
4	EEPROM Checksum Error
5	Duplicate IP address on network
6	Software does not match hardware

45

The E-DIAG LED and the E-CHAN 1 LEDs blink at the same time to indicate the following errors:

Number of Blinks	Error
4	Faulty Network Connection
5	No DHCP Response Received

Menu Configuration

The LRP2000 features a menu-driven program designed to give convenient access to the serial parameters, restore defaults, or change operating modes.

5.1 How to Enter the Menu Configuration

Begin by connecting the COM2 port to your PC host (see table below) and running EC that is available on the diskette, or from Escort Memory Systems' Web site at www.ems-rfid.com.

LRP2000		Standard PC Serial Port	
COM2 Pin Number	Signal Name	DB9 Pin Number	Signal Name
5	TX	2	RX
4	RX	3	TX
6	GND	5	GND

Set the serial parameters to the LRP2000 default settings or the last known state of COM2.

The default settings for COM2 are as follows:

- Baud- 9600
- · Parity- None
- Data bits- 8
- Stop bits- 1
- Flow control- None

If you cannot establish communications with COM2, do the following to restore the default values:

- 1. Place DIP switch 5 in the ON position and cycle power to the LRP2000, or press the reset switch. This loads the default values.
- 2. Place DIP switch 5 in the OFF position and cycle power once more.

Please refer to Chapter 4, Communications Interface for more information on the serial interface.

To enter the Main Board Configuration Menu, cycle power or press the reset switch, and then press CTRL-D within the first seven seconds of the initialization. The LRP2000 displays the Configuration Menu. As the LRP2000 starts the Configuration program, both the RF and CONFIG LEDs flash. The Main Board Configuration Menu displays with the current main board software version number together with the DSP firmware version.

LRP2000 (ISO Only) Standard Program

Main Program V0.5D, Sept. 2002

DSP Program V0.5c, November 2002

- [1] Set-up Operating Parameters
- [2] Download New Program
- [3] Download DSP Program
- [4] Exit to Operating Mode

Enter Selection:

5.2 Set-Up Operating Parameters

To change the operating parameters of the LRP2000, enter 1 at the initial menu.

The following menu is displayed, listing the current settings (the exact appearance of the menu display depends on the settings you have made and will be updated when you save your changes):

Serial Port COM1: RS232, 9600, N, 8, 1, No handshake (DIP switches)

Serial Port COM2: RS232, 9600, N, 8, 1, No handshake

Command Protocol: ABx Standard RF Communication: Fast Mode

[1] Set COM1 Parameters

[2] Set COM2 Parameters

[3] Set Operating Mode

[4] Set RF Communications

[5] Restore Factory Defaults

[6] Return to Main Menu

Enter Selection:

Enter the number of the sub-menu you wish to enter. When you have made your selection, you are prompted to save your changes to the non-volatile EEPROM. For the new settings to take effect, you must save your changes to the EEPROM and reset the LRP2000. If you do not save changes to the EEPROM, the new settings are effective only until the LRP2000 is reset.

The following sub-menus are presented here in their entirety. Actually the menus are presented one option at time, advancing as you enter selections. Some options shown are dependent on earlier selections.

5.2.1 Set COM1 Parameters

Selecting 1 from the above menu displays the following options for the COM1 parameters. These settings are valid only if you are not using the DeviceNet Interfaces (such as DIP switch 4 is in the OFF position). Enter the appropriate number at each prompt. The default values are indicated by an asterisk (*).

*** Set COM1 Parameters ***

Baud Rate? [0] 1200 [1] 2400 [2] 4800 [3] 9600* [4] 19200 [5] 38400

Data size? [0] 7 bit [1] 8 bit*

Parity? [0] None* [1] Even [2] Odd

Handshake? [0] None* [1] Xon/Xoff

Save Changes to EEPROM? [0] No [1] Yes

5.2.2 Set COM2 Parameters

Selecting 2 from the "[1] Set-up Operating Parameters" menu displays the following options for COM2. Enter the appropriate number at each prompt. The default values are indicated by an asterisk.

*** Set COM2 Parameters ***

Baud Rate? [0] 1200 [1] 2400 [2] 4800 [3] 9600* [4] 19200

Data size? [0] 7 bit [1] 8 bit*

Parity? [0] None* [1] Even [2] Odd

Handshake? [0] None* [1] Xon/Xoff

Save Changes to EEPROM? [0] No [1] Yes

5.2.3 Set Operating Mode

The "[3] Set Operating Mode" menu allows you to choose the ABx command protocol the LRP2000 uses, or configures it to enter Continuous Read Mode automatically upon start-up.

*** Set Operating Mode ***

Operating Mode? [0] ABx Standard* [1] ABx Fast [2] ABx ASCII

Framing Editing (for ABx Fast and ABx ASCII selection only from previous menu choice, see note below for additional setup information).

Checksum? [0] Disabled* [1] Enabled

Power up in Continuous Read Mode? [0] NO [1] Single Tag [2] Multiple Tag

Start Address (0 to 47)¹

Length (1 to 48)

Delay Between Duplicate Decodes (0 to 60)

Raw Read Response? [0] NO [1] CR terminate [2] CR/LF terminate

Save Changes to EEPROM? [0] No [1] Yes

Operating Mode

The LRP2000 offers three modes for the transfer of data and commands. ABx Standard (ABxS) uses only the LSB for tag data, while ABx Fast (ABxF) uses both the MSB and LSB for the passing of data. ABx ASCII (ABxA) mode permits RFID operations using seven-bit data packets in the form of printable ASCII characters.

Framing Editing

If option 1 "ABx Fast" or option 2 "ABx ASCII" is chosen from "Operating Mode" above, you have the option of modifying the packet header and terminator characters. This can be useful when interfacing with other Host devices that require the terminator to be a CR "0Dh." The current preamble and terminator will be displayed. The default values are 02h 02h as the packet header, and 03h as a single terminating character. These are the values used in command and response examples throughout this Operator's Manual, but can be changed to fit your needs. To use the current message framing, simply answer NO.

Current FAST Packet Framing

Preamble = 02H 02H

Terminator = 03H

Modify FAST packet framing? [0] No [1] Yes

OR

Current ASCII Packet Framing

Preamble = 02H 02H

Terminator = 03H

Modify ASCII packet framing? [0] No [1] Yes

If the YES option is selected the following prompt appears asking whether the packet should have a one-or two-character header.

Number characters in packet preamble? [1] One [2] Two

If a one-character preamble is desired, you are prompted to enter the hexadecimal value of the character in the range of 01h to 7Fh. The value 0 is illegal and cannot be used for the message preamble.

New FAST Header Character (01 - 7F) =

49

^{1.} Valid ranges for Start Address and Length depend on the tag category.

If a two-character preamble is desired, you are prompted to enter the hexadecimal value of both characters. The prompts shown below are if ABx Fast protocol was selected. If ABx ASCII protocol was selected, the prompts will reflect that.

```
First FAST Header Character (01 - 7F) = Second FAST Header character (01 - 7F0) =
```

Once the preamble character(s) have been entered, the following prompt appears allowing the user to specify one- or two-character message termination sequence.

Number characters in packet termination? [1] One [2] Two

If a one-character terminator is desired, you are prompted to enter the hexadecimal value of the character in the range of 01h to 7Fh. The value 0 is illegal and cannot be used for the message terminator.

```
New FAST terminator Character (01 - 0F) =
```

If a two-character preamble is desired, you are prompted to enter the hexadecimal value of both characters. The prompts shown below are if ABx Fast protocol was selected. If ABx ASCII protocol was selected, the prompts will reflect that.

```
First FAST Terminator Character (01 - 7F) = Second FAST Terminator Character (01 - 7F) =
```

At this point the selection returns to the main menu.

Checksum? [0] Disabled [1] Enabled

After the checksum prompt, the following prompt appears allowing you to configure the LRP controller to begin scanning for tags at power-up automatically:

Power up in Continuous Read mode?

[0] NO

- [1] Continuous Block Read (0Dh) active
- [2] Continuous Block Read All (8Dh) active
- [3] Continuous SN Block Read All (83h) active

If option 1 (Continuous Block Read) is selected, the following prompts appear to allow you to specify the starting tag address, how many seconds the tag must be out of the RF field before it is read again, and what the Raw Read Response should be:

```
Start Address (0 to 111)<sup>1</sup>
Length (1 to 112)
```

Delay Between Duplicate Decodes (0 to 60)

Raw Read Response? [0] NO [1] CR terminate [2] CR/LF terminate

^{1.} Valid ranges for Start Address and Length depend on the tag category.

If option 2 or 3 is selected from the "Power Up In Continuous Read Mode" menu, the following prompts appear to allow you to specify the starting tag address, how many bytes will be read, the Family Code subset of tags to be read, the number of different tags that must be seen before the same tag will be read again, and what the Raw Read Response should be:

Start Address (0 to 111)
Length (1 to 112)
Family Code
Tag Delay (0 to 225)
Raw Read Response? [0] NO [1] CR terminate [2] CR/LF terminate

Power up in Continuous Read Mode?

You also have the option of setting the LRP2000 to start up in Continuous Read Mode. When you have configured the LRP2000 to function in this manner, you do not issue commands to the LRP2000. It will, upon start up, enter directly into a Continuous Read Mode. Since this bypasses the normal command parameters, you must specify the Continuous Read Mode parameters.

The LRP2000 responds to other commands and resumes Continuous Read Mode when completed.

If you are using your LRP2000 in this mode, you must choose whether you want the LRP2000 to read a single tag or multiple tags within the field.

To exit Continuous Read Mode, you must either re-enter the Configuration Menu and select NO from the Power up in Continuous Read Mode option, or issue a Continuous Read command from the host with a length of 0 as described in Chapter 6, RFID Interface.

Start Address (0-XXX)

Enter the tag address where you want the read to begin.

Length (1-XXX)

Enter the length of the read you wish the LRP2000 to perform. Make certain that the length value does not exceed the number of possible addresses following the starting tag address. Entering a read length of 0 disables Continuous Read Mode.

Delay Between Identical Decodes (0-60)

The Delay Between Identical Decodes parameters can have a value of 0 to 60 seconds. When the Delay Between Identical Decodes is set to 0, the LRP2000 continuously reads AND transmits tag data to the host. This can flood the buffers and cause communication errors and data loss.

Raw Read Response?

If you have selected ABx Fast or ABx ASCII, you have the option of stripping the command protocol from the data and adding a terminator to separate the data packets. You can choose a CR (0DH) or CR/LF (0DH, 0AH) to terminate the data.

5.2.4 Set RF Communication

*** Set RF Communication ***
RF Communication
Enter Tag Category
Save Changes to EEPROM

RF Communication

Fast Mode or Standard Mode sets the RF data rate from the reader to the tag and should be set to the default condition "Fast Mode." Standard Mode was implemented to meet strict certification emission limits, which is not needed in most countries.

***RF Communication? ***
RF Communication? [0] Fast Mode* [1] Standard Mode 0

Enter Tag Category

The LRP2000 support ISO15693 tags. The LRP2000 allows you to specify Philips, Infineon, or Texas Instruments tags. Specifying a tag type allows the LRP2000 to understand the memory organization, features, and performance of the tag being used. Only one manufacturer's tags can be used in an installation.

Enter Tag Category
Enter Label Type: [1] SLI, [2] Tag-it, [3] My-D

Save Changes to EEPROM

Saving the changes to EEPROM makes the configuration setting permanent. Otherwise when the power is cycled the configuration setting returns to the previous setting.

Save Changes to EEPROM
Save Changes to EEPROM? [0] No [1] Yes

5.2.5 Restore Factory Defaults

It is often helpful during troubleshooting to restore the LRP2000 to known default values. To do so, select 1 from this menu:

*** Restore Factory Defaults ***
Restore Factory Default? [0] No [1] Yes

The restored defaults are saved to the EEPROM. The communication defaults can also be restored by placing the main board DIP switch 5 in the ON position and then restarting the LRP2000. After you have saved any changes, you must re-initialize the LRP2000 with switch 5 in the OFF position.

5.2.6 Return to Main Menu

When you have completed your configuration, entering 5 returns you to the initial menu. Unsaved changes are effective until the LRP2000 is reset. Saved changes are loaded automatically the next time the LRP2000 is reset.

5.3 Download New Program

Before attempting to download new firmware to the LRP2000 main board, read the instructions provided in a readme.txt file on the update diskette.

When you select 2 from the Main Menu, the LRP2000 displays information on the current program and prompts you to begin the download.

*** Download New Program***
Program Size: 21824 Bytes
Program Checksum: 5AE0H (OK)
Free Program Memory: 39600 Bytes
Flash Write Counter: 2 times
Press a key to start Downloading

After you have pressed a key, the LRP2000 displays:

Send the Intel Hex file. Downloading now.

Send the new program file via your terminal emulation program in ASCII text or hexadecimal format. Wait 10 seconds after the download is complete before resetting the LRP2000.

NOTE: It is not necessary to download firmware into the unit unless you are instructed to do so by Escort Memory Systems technical support personnel.

5.4 Downloading DSP Firmware

Before attempting to download new firmware to the LRP2000 main board, read the instructions provided in a readme.txt file on the update diskette.

When upgrading software in the controller, the number and meaning of the configuration parameters may not match between the old and new software. The old settings may not be interpreted properly with the new software. Before downloading another version of software, display and record the current configuration settings, then download the new software version.

Set DIP switch 5 (on the main board) ON and apply power to initialize the configuration parameters to their default states. When the LEDs stop flashing, turn DIP switch 5 to OFF and press the reset switch. Enter the Configuration Menu and re-enter any non-default configuration parameters.

When you select 3 from the Main Menu, the LRP2000 prompts you to begin the download.

*** Download DSP Program***
Press a key to start Downloading

After you have pressed a key, the LRP2000 displays:

Send the Intel Hex file. Downloading now.

Send the new firmware via your terminal emulation program in ASCII text or hexadecimal format. The firmware is automatically transferred to the DSP Flash Memory. Wait 10 seconds after the download is complete before resetting the LRP2000.

Record: 750

Download OK

File Transfer to DSP

Block 24/24

DSP Flash Programming...

New Firmware Transferred to DSP

WARNING: Do not download INTERFACE BOARD firmware to the main board.

NOTE: It is not necessary to download firmware into the unit unless you are instructed to do so by Escort Memory Systems technical support personnel.

5.5 Exit to Operating Mode

This option is available if you wish to use temporary, unsaved, configuration parameters. The unsaved options you have selected are used until the LRP2000 is reset and the saved parameters are restored.

RFID Communications

6.1 Introduction

Conventions

In this manual, numbers expressed in hexadecimal are appended with "H." For example, the decimal number 10 is expressed as "0AH" in hexadecimal. The addresses of the bytes of read/write memory within an RFID tag are numbered from 0 to N, where N is one less than the number of read/write bytes in the tag. The number of read/write bytes is equal to the Block Size multiplied by the Number of Blocks.

Command protocols

The LRP2000 offers three possible command protocols: ABx Standard, ABx Fast, and ABx ASCII. The commands in all three protocols have the same basic structure. RFID Command protocols do not affect the LRP2000 to tag communications.

ABx Standard is a word-based format and shares a common syntax with most existing RFID systems produced by Escort Memory Systems. ABx Standard was designed for PLCs that handle word-based data better then byte-based data.

The ABx Fast and ABx ASCII protocols are byte-based packet structures. ABx Fast permits command execution with fewer total bytes transferred. Escort Memory Systems recommends ABx Fast with checksum enabled because of faster command execution and increased error detection.

Commands are comprised of a header, a number of parameters, and a command terminator. The headers and terminators are unique to each protocol, but are the same for every command within one protocol. For example, in ABx Standard, every command begins with the one-byte header "AAH," and ends with the two-byte terminator "FFFFH." In ABx Fast and ABx ASCII, every command begins with the 0202H, and ends with 03H for the default configuration setting. The header and terminator can be changed in the configuration settings menus.

Like the commands, the responses from the controller comprise a header, a number of response codes and data, and a response terminator. The headers and terminators are the same for the responses as they are for the commands. The ABx command set is made of three subsets: the single-tag commands, multitag commands, and user I/O commands. The single-tag commands perform read/write operations on exactly one tag in the range of the antenna at a time. The presence of more than one tag within the range of the antenna may cause RFID communication errors. To avoid these errors, the multi-tag commands allow for simultaneous communication to and from multiple tags within the reading range of the antenna.

The user I/O commands do not communicate with RFID tags. They simply interrogate the status of the inputs wired to the unit, and set the status of the outputs.

6.1.1 ABx Command Set Listings

Table 14, Table 15, and Table 16 list the ABx commands recognized by the LRP2000.

Table 14: Single Tag Commands

04H	Fill Tag
05H	Read
06H	Write
07H	Read Tag Serial Number
08H	Tag Search
0DH	Continuous Read
14H	Get Status
16H	Write Family Code
17H	Lock Family Code
94H	SN Fill
95H	SN Read
96H	SN Write

Table 15: Multi-tag Commands

82H	SN Read All	
83H	Start/Stop Continuous SN Read All	
84H	Fill Tag All	
85H	Read All	
86H	Write All	
87H	Read Tag SN All	
88H	Tag Search All	
8BH	Write Family Code All	
8CH	Lock Family Code All	
8DH	Start/Stop Continuous Read All	
91H	Memory Lock All	

Table 16: User I/O Commands

1	10H	Set Output
1	11H	Input Status

NOTE: The delay between the characters of a command sent to the controller cannot be longer than 200 ms.

6.2 Command Parameters

6.2.1 Command Timeout

All single-tag and multi-tag commands have a timeout value that is used to specify the time the controller will attempt to complete the specified operation. The absolute minimum timeout value that can be issued to the controller is 1 millisecond. The absolute maximum time for which the controller will attempt to complete a command is just over one minute. The timeout parameter is passed to the controller in units of milliseconds with a maximum value of 65,534 (FFFEH) milliseconds. A timeout value of 0 will generate a syntax error. Thirty milliseconds is the shortest recommended timeout and should only be used for single-tag command applications. Multiple-tag commands will require longer timeout values. For applications where the time that the tags spend in the field must be short, tests should be performed to ensure that a sufficiently large timeout value is chosen in order to read all of the tags. A longer timeout value does not necessarily mean that a command will take any longer to execute. If the tags being addressed are in the field, it only represents the period of time (in milliseconds) the unit will attempt to execute the command. If the tags are present, the response time to execute the command will be the same whether the timeout is 100 ms or 10,000 ms.

6.2.2 Delay Between Duplicate Decodes

The one parameter that is unique to the single-tag command 0DH is Delay Between Duplicate Decodes. After Start/Stop Continuous Read is started, any tag that comes within range of the antenna is read and the requested data from the tag is sent to the host. This delay parameter represents the number of seconds that a tag must remain out of range before it is read a second time. This delay is implemented to allow you to limit the volume of information sent by the controller. With this delay parameter set to 00H, the controller repeatedly sends the requested information until the tag is out of range. The maximum allowable value is 60 (3CH) seconds.

6.3 Multi-tag Command Parameters

6.3.1 Tag Repeat Count

The Tag Repeat Count allows you to limit the volume of information sent by the controller when you are using the multi-tag Continuous Read commands, 83H and 8DH. After Continuous Read is initiated, any tag that comes within range of the antenna is read, and the requested data from the tag is sent to the host. The Tag Repeat Count parameter represents the number of other tags that must be read before the data from the first tag is sent for a second time.

This feature uses a FIFO overflow buffer; first tag in will be the first tag id to be discarded when the buffer is full. Every time a tag is read its ID is compared to the current buffer to see if it has been read before. The value you use for the tag count is directly related to the buffer size. Tags are read once upon entering the field, and read a second time only after they have been reset by leaving and re-entering the field. Once a tag reenters the field, it is read again and compared to the buffer. If the tag ID is not in the buffer, the tag data requested is sent to the host. If the tag ID is in the buffer, it is ignored by the LRP2000.

With this Count parameter set to 00H, the controller repeatedly sends the requested information until the tags are out of range.

6.3.2 Family Codes

Family Codes allow you to organize the tags in your application. For example, you can use one family code for pallet identification, a second family code for case-level identification, and a third family code for item-level identification. With the tags organized by family code this way, you could read a box of tagged items on the assembly line with item level family codes, and then write the product code and quantity to a case level tag.

At the pallet level, a read command of the case level family coded tags would produce the quantity of cases on the pallet and the case data and the quantity of cases could be written to the pallet tag using the pallet tag family code. This way a pallet going through a gate can be read quickly by just reading the pallet family codes and ignoring the case and item level family coded tags. Or if quantity verification is required, a more time consuming read of case level or even item level can be issued.

The multi-tag commands always have a Family Code as a parameter. The Family Code is a one-byte field in the tag, which resides outside the read/write memory address space. When the Family Code parameter is set to 0, all the tags in the field will respond. When the Family Code parameter is set to a non-zero byte value, only tags with the same specified Family code will respond. The Family Code byte can be read, written, and locked independently of the rest of the read/write address space in the tag.

6.3.3 Start Continuous Read

This parameter, included only on command 83H, is a one-byte parameter that starts the Continuous Read if set to 01H, and stops the Continuous Read if set to 00H. Both of the other Continuous Read commands— 0DH and 8DH—rely on the Number of Bytes to be read to start and stop the command. If the Number of Bytes is set to any valid nonzero value, the Continuous Read starts. If it is set to zero, the Continuous Read stops. The use of this additional parameter on command 83H allows for the Number of Bytes to be set to zero upon initiation of the command, thereby interrogating the tags only for their serial numbers.

CAUTION: EMS recommends that before issuing other commands, you always issue a Stop Continuous Read command, and then issue a Start Continuous Read after the interim command has been executed. Applications that send other commands during Continuous Read mode should be thoroughly tested before deployment.

6.4 Standard ABx Protocol

The ABx standard is a binary protocol, word (2-byte) oriented, so the syntax table reports the most significant byte (MSB) and the least significant byte (LSB). In the serial transmission, the MSB is transmitted first.

Table 17: Single Tag Example

Field	Number of Bytes	Content	
Header	1	ААН	
Command	1	Command Code	
Start Address	2	One word gives the first byte of tag memory to be accessed	
Number of Bytes	2	One word gives the number of contiguous bytes to be accessed. Not used on 07H, 08H, 14H, 16H	
Block Addresses	2	The first byte gives the address of the first block. The second byte gives the number of blocks to be interrogated. Only used with command 14H	
Timeout	2	0001H to FFFEH milliseconds	
Data	varies	Data that is written to a tag. Each byte is included in the LSB of a two-byte word	
Terminator	2	FFFFH	

Table 18: Multi-tag Example

Field	Number of Bytes	Content	
Header	1	AAH. Always the MSB of the first word of an ABX Standard command	
Command	1	Command Code - LSB of the first word	
Family code	1	00H to address all tags in field	
Reserved	1	Reserved for future use, set to 00H	
Start Address	2	One word gives the first byte of tag memory to be accessed	
Number of Bytes	2	One word gives the number of contiguous bytes to be accessed. Not used on commands 87H, 88H, 91H, 8BH, 8CH	
Block Addresses	4	The first word gives the address of the first block. The second word gives the number of blocks to be interrogated. Only used with command 91H	
Timeout	2	0001H to FFFEH milliseconds	
Data	varies	Data that is written to a tag. Each byte is included in the LSB of a two-byte word.	
Terminator	2	FFFFH	

6.4.1 ABxS Command 04H: Fill Tag

DESCRIPTION

Fill an RFID tag with a one-byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear contiguous segments of a tag's memory. It writes a one-byte value repetitively across a specified range of tag addresses. The fill function requires one data value byte, a starting address, and a fill length. It fills the tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. When Fill Length is set to 0, the controller writes fill data from the start address to the end of the tag's memory. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Start Address	Tag address where the fill starts	
Fill Length	Number of tag addresses to be filled in bytes	
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)	
Data Value Byte	Byte to be used as fill	
Message Terminator	FFFFH	

Example

The goal is to write ASCII 'A' (41H) to the ten bytes of tag memory starting at byte address 5. A timeout of $2 \cdot (07D0H = 2000 \times 1)$ ms increments) is set for the completion of the command.

Comm	Command from Host		
MSB	LSB	Remarks	
AAH	04H	Perform Command 4	
00H	05H	Start Address = 0005H	
00H	0AH	Fill Length= 10 bytes(000AH)	
07H	D0H	2-second Timeout	
00H	41H	Data Value Byte = 41H	
FFH	FFH	Message Terminator	

Successful Response From Controller		
MSB LSB Remarks		
AAH	04H	Command Echo
FFH	FFH	Message Terminator

6.4.2 ABxS Command 05H: Read

DESCRIPTION

Read data from contiguous bytes of the RFID tag's read/write memory.

DISCUSSION

This command is used to read bytes from contiguous areas of tag memory. The minimum length of the data read from the tag is 1 byte. The maximum is the entire read/write address space of the tag. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The Read command consists of a start address and length, followed by the message terminator, FFFFH, as shown below. If the read range exceeds the last tag address, the controller returns error message 21H, invalid format. The data read from the tag is returned in the least significant byte (LSB) of the word, and the most significant byte (MSB) is always 00H.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Start Address	Tag address where the read starts	
Read Length	Number of tag addresses to be read	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Message Terminator	FFFFH	

Example

The goal is to read the eight bytes of data from the tag starting at address 1. A timeout of 2 seconds $(07D0H = 2000 \times 1)$ ms increments) is set for the completion of the Read.

Command From Host		
MSB	LSB	Remarks
AAH	05H	Perform Command 5
00H	01H	Start Byte Address = 0001H
00H	08H	Read Length = 8 bytes
07H	D0H	2-second Timeout
FFH	FFH	Message Terminator

Response from Controller		
MSB	LSB	Remarks
AAH	05H	Command Echo
00H	52H	Read Data 1 =52H
00H	46H	Read Data 2 =46H
00H	49H	Read Data 3 =49H
00H	44H	Read Data 4 =44H
00H	20H	Read Data 5 =20H
00H	54H	Read Data 6 =54H
00H	61H	Read Data 7 =61H
00H	67H	Read Data 8 =67H
FFH	FFH	Message Terminator

6.4.3 ABxS Command 06H: Write

DESCRIPTION

Writes data to an RFID tag.

DISCUSSION

This command is used to write segments of data to contiguous areas of tag memory. It is capable of transferring up to 112 bytes of data transferred from the Host with one command. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The Write command consists of a start address followed by the data stream to be written to the RFID tag. If the write range exceeds the last tag address, the controller returns error message 21H, invalid format. The controller returns an error if the write length is 0. The data to be written to the tag is contained in the LSB of the register, and the MSB is always 00H.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Start Address	Tag address where the write will start	
Write Length	Number of tag addresses to be written to in bytes	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Write Data	Data to be written	
Message Terminator	FFFFH	

Example

Writes 4 bytes of data to the tag starting at address 0020H. A timeout of 2 seconds $(07D0H = 2000 \times 1 \text{ ms})$ increments) is set for the completion of the Write.

Command from Host		
MSB	LSB	Remarks
AAH	06H	Perform Command 6
00H	20H	Start Address = 0020H
00H	04H	Write Length = 4 bytes
07H	D0H	2-second Timeout
00H	52H	Write Data 1 =52H
00H	46H	Write Data 2 =46H
00H	49H	Write Data 3 =49H
00H	44H	Write Data 4 =44H
FFH	FFH	Message Terminator

Response from Controller		
MSB LSB Remarks		Remarks
AAH	06H	Command Echo
FFH	FFH	Message Terminator

6.4.4 ABxS Command 07H: Read Tag Serial Number

DESCRIPTION

This command retrieves the eight-byte tag serial number.

DISCUSSION

Each controller tag has a unique serial number. This number cannot be changed and is not part of the available data bytes. The tag serial number is returned in the LSB only, with the MSB as 00H.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Message Terminator	FFFFH	

Example

In this example, the LRP 2000 waits until a tag is in range and then reads the eight-byte serial number. The ID is AC310200000104E0H (hexadecimal) in this example.

Command from Host		
MSB	LSB	Remarks
AAH	07H	Perform Command 7
07H	D0H	2-second Timeout
FFH	FFH	Message Terminator

Response from Controller		
MSB	LSB	Remarks
AAH	07H	Command Echo
00H	ACH	First SN byte
00H	31H	Second SN byte
00H	02H	Third SN byte
00H	00H	Fourth SN byte
00H	00H	Fifth N byte
00H	01H	Sixth SN byte
00H	04H	Seventh SN byte
00H	E0H	Eighth SN byte
FFH	FFH	Message Terminator

6.4.5 ABxS Command 08H: Tag Search

DESCRIPTION

Check to see if there is an RFID tag in the antenna field.

DISCUSSION

This command activates the controller to search for the presence of a tag within range of the antenna. If the controller finds a tag, it returns a command echo to the host. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (30 to 65,534 ms). When the timeout is set to 0, the controller returns a syntax error. If no tag is present, it returns an error message. See Section 6.2 for more information on error codes.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Message Terminator	FFFFH	

Example

Checks for an RFID tag in the RF field. A timeout of 2 seconds ($07D0H = 2000 \times 1$ ms increments) is set for the completion of the Tag Search.

Command from Host		
MSB LSB Remarks		Remarks
AAH	08H	Perform Command 8
07H	D0H	2-second Timeout
FFH	FFH	Message Terminator

Response from Controller		
MSB LSB		Remarks
AAH	08H	Command Echo
FFH	FFH	Message Terminator

6.4.6 ABxS Command 0DH: Stop/Start Continuous Read

DESCRIPTION

When in Continuous Read mode, the controller sends read commands continuously to any tag in range of the antenna. When a tag comes within range, it is read and the data passed to the host computer. The controller continues to read the tag but does not send the same data to the host until the tag has been outside the RF field for a specified time period. This Delay Between Identical Decodes parameter prevents redundant data transmissions when the controller is in Continuous Read mode.

DISCUSSION

The Start/Stop Continuous Read command contains three parameters: read length, start address, and delay between identical decodes. The read length parameter switches the mode. Any valid, non-zero length (1-48) sets the controller into Continuous Read mode. A read length value of 00H turns Continuous Mode off. The Delay Between Identical Decodes parameters can have a value of 0 to 60 seconds. When the Delay Between Identical Decodes is set to 0, the controller continuously reads AND transmits tag data to the host. This can flood the buffers and cause communication errors and data loss. If the controller receives other commands from the host, it executes them and then resumes Continuous Read mode. To exit Continuous Read mode, issue the command with a read length of 0.

In Continuous Read mode, the LEDs indicate the following:

LED	Behavior	Description	
ANT	ON	Assumes the antenna is powered and functioning	
CONFIG	BLINK	Tag entered the RF field	
RF	ON	Tag has been read and is still in the field	
RF	OFF	Read tag has been out of range for the specified time	

The command and response from the controller are formatted as follows.

Command		
Field	Remarks	
Command	Command number in hex preceded by AAH	
Start Address	2 byte value for the start address in the tag	
Read Length	2 byte value for the read length	
Delay Between Identical Decodes	Time the tag must be out of the antenna range before the controller will transmit data again from that tag. Value is expressed in 1 second units	
Message Terminator	FFFFH	

Response		
MSB	LSB	Remarks
AAH	0DH	Command Echo
FFH	FFH	Message Terminator

This example places the controller in Continuous Read mode and reads eight bytes of data from the tag starting at address 0001H. A delay between identical reads of 2 seconds (0002H =2 x 1 second increments) is set.

Command from Host			
MSB	LSB	Remarks	
AAH	0DH	Perform Command D	
00H	01H	Start address	
00H	08H	Read 8 bytes	
00H	02H	2-second Timeout	
FFH	FFH	Message Terminator	

Response from controller			
MSB	LSB	Remarks	
AAH	0DH	Command Echo	
00H	52H	Read data byte 1	
00H	46H	Read data byte 2	
00H	49H	Read data byte 3	
00H	44H	Read data byte 4	
00H	41H	Read data byte 5	
00H	20H	Read data byte 6	
00H	54H	Read data byte 7	
00H	61H	Read data byte 8	
FFH	FFH	Message Terminator	

The controller first returns an acknowledgment of the command followed by a response containing read data when a tag enters the antenna field.

To exit Continuous Read mode, send the command with the read length variable set to 0 as shown below. The value of the other variables are not considered.

Command from Host		
MSB	LSB Remarks	
AAH	0DH	Perform Command D
00H	01H	Record Length
00H	00H	Read 0 bytes/end mode
00H	02H	2-second Timeout
FFH	FFH	Message Terminator

Response from Controller		
MSB	B LSB Remarks	
AAH	0DH	Command Echo
FFH	FFH	Message Terminator

6.4.7 ABxS Command 14H: Get Memory Status

DESCRIPTION

Returns the lock status of the specified blocks of data.

DISCUSSION

This command can be used to determine whether blocks of tag memory are locked (marked "read-only"). The number of specified contiguous blocks are addressed from the specified first block. The response from the controller gives the status of each block through a one-word value. The value is 0000H if the block is unlocked, 0001H if locked.

Field	Content
Header	AAH
Command	14H
First Block	Two-byte value for the first block whose lock status will be interrogated
Number of blocks	Two-byte value for the number of blocks whose lock status will be interrogated
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)
Message Terminator	FFFFH

Response from controller:

Field	Content
Header	AAH
Command Echo	14H
Status	One word represents the status of each block 0000H indicates that the block is not locked 0001H indicates that the block is locked
Terminator	FFFFH

6.4.8 ABxS Command 16H: Write Family Code

DESCRIPTION

Changes the family code of an RFID tag.

Field	Content
Header	AAH
Command	16H
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)
New Family Code	One word with 00H in the MSB and the new Family Code in the LSB
Terminator	FFFFH

Response from controller:

Field	Content
Header	AAH
Command Echo	16H
Terminator	FFFFH

6.4.9 ABxS Command 17H: Lock Family Code

Description:

Locks the Family Code Byte to its current value, so that it cannot be written. Once locked, the Family Code cannot be unlocked.

Field	Content
Header	ААН
Command	17H
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)
Terminator	FFFFH

Response from controller:

Field	Content
Header	AAH
Command Echo	17H
Terminator	FFFFH

6.4.10 ABxS Command 82H: SN Read All

DESCRIPTION

Command 82H reads the serial numbers and the specified bytes of data from all RFID tags in the field or those with the specified Family ID. Returns the serial number of the tags read, along with tag data.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of transferring the entire read/write address of data transferred to the host with one command. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error.

The response to this command contains the serial number of the responding tags preceding the data from those tags. The termination packet is transmitted when the timeout expires. Each packet is sent to the host as soon as it is available. The returned serial numbers can be used to read and write to tags in the field via the SN Read/Write command.

The SN Read All consists of Family ID, Reserved Byte, a start address and length, followed by a timeout value, and the message terminator, FFFFH. A special termination packet is sent when the timeout expires. If the read length exceeds the last tag address, the controller returns a syntax error, code 21H.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Tag Family	Tag Family ID - 00H = all tags	
Reserved	00H	
Start Address	Tag address where the read will start	
Read Length	Numbers of tag addresses to be read	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Message Terminator	FFFFH	

Reads two bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 ms increments) is set for the completion of the SN Read All. The Family ID byte is set to zero, so all tags will be read. Two tags respond with read data.

Command from Host			
MSB	LSB	Remarks	
AAH	82H	Perform Command 82	
00H	00H	Tag Family 00/Reserved	
00H	01H	Start Address	
00H	02H	Read Length	
07H	D0H	2 second Timeout	
FFH	FFH	Message Terminator	

Response from Controller		
MSB	LSB	Remarks
AAH	82H	Command Echo/Tag 1
00H	10H	SN byte 1/Tag 1
00H	43H	SN byte 2/Tag 1
00H	6CH	SN byte 3/Tag 1
00H	00H	SN byte 4/Tag 1
00H	00H	SN byte 5/Tag 1
00H	01H	SN byte 6/Tag 1
00H	04H	SN byte 7/Tag 1
00H	E0H	SN byte 8/Tag 1
00H	30H	Data byte 1/Tag 1
00H	31H	Data byte 2/Tag 1
FFH	FFH	Terminator/ Tag 1
AAH	82H	Command Echo/Tag 2
00H	08H	SN byte 1/Tag 2
00H	0AH	SN byte 2/Tag 2
00H	81H	SN byte 3/Tag 2
00H	00H	SN byte 4/Tag 2
00H	00H	SN byte 5/Tag 2
00H	01H	SN byte 6/Tag 2
00H	04H	SN byte 7/Tag 2
00H	E0H	SN byte 8/Tag 2
00H	40H	Data byte 1/Tag 2
00H	41H	Data byte 2/Tag 2
FFH	FFH	Terminator/ Tag 2
AAH	FFH	Command end
02H	08H	Ntags/Status
FFH	FFH	Message Terminator

6.4.11 ABxS Command 83H: Start/Stop Continuous SN Read All

DESCRIPTION

Command 83H starts and stops continuous read all mode for multiple tags. It reads the serial number and tag data. If the read length is zero (0), then only the tag's serial number is read. While in this mode, any other command can be issued and will be handled properly. After processing the new command, the controller resumes the continuous read. Continuous SN Read All is started or stopped by the start/stop byte in the command. A one (1) in the Start/Stop byte starts the continuous read and a zero (0) stops continuous read. The command has a parameter, Repeat Count, that can prevent multiple reads of the same tag. A tag is not read a second time until this specified number of tags have been read since it was last read. Allowed values are from 0 to 255, where 0 means the tag can be re-read anytime. When Start/Stop Continuous SN Read All is interrupted with any other command, the repeat count is stopped during execution of the other commands and then resumed. The Reader/Writer responds with an acknowledge packet followed by data packets for each tag read.

Field	Remarks		
Command	Command number in hex preceded by AAH		
Family ID	Tag Family ID - 00H = all tags		
Reserved	00H		
Start Address	Tag address for the start of the read		
Read Length	One word for the number of bytes to be read.		
Repeat Count	Number of tag that must be read before the same tag will be read again (0-255)		
Start/Stop	0001H to start, 0000H to stop		
Message Terminator	FFFFH		

Example

This example starts a continuous read of three bytes starting at address two, has a repeat count of four, and a family code of zero.

Comm	Command from Host		
MSB	LSB	Remarks	
AAH	83H	Perform Command 83	
00H	00H	Tag Family 00/Reserved Byte	
00H	02H	Start Address	
00H	03H	Read Length of the data bytes	
00H	04H	Repeat count	
00H	01H	Stop/Start continuous read. This is to Start	
FFH	FFH	Message Terminator	

Response from Controller			
MSB	LSB	Remarks	
AAH 83H Command Echo			
FFH FFH Message Terminator			

After the controller sends the acknowledgement, it sends the data read from the tags in the field.

MSB	LSB	Remarks
AAH	83H	Command Echo
00H	1EH	Serial Number byte /Tag 1
00H	94H	Serial Number byte /Tag 1
00H	0BH	Serial Number byte /Tag 1
00H	01H	Serial Number byte /Tag 1

MSB	LSB	Remarks
00H	00H	Serial Number byte /Tag 1
00H	01H	Serial Number byte /Tag 1
00H	04H	Serial Number byte /Tag 1
00H	E0H	Serial Number byte /Tag 1
00H	6CH	Tag data byte /Tag 1
00H	6CH	Tag data byte /Tag 1
00H	20H	Tag data byte /Tag 1
FFH	FFH	Message Terminator
AAH	83H	Command Echo
00H	4BH	Serial Number byte /Tag 2
00H	C5H	Serial Number byte /Tag 2
00H	0BH	Serial Number byte /Tag 2
00H	01H	Serial Number byte /Tag 2
00H	00H	Serial Number byte /Tag 2
00H	01H	Serial Number byte /Tag 2
00H	04H	Serial Number byte /Tag 2
00H	E0H	Serial Number byte /Tag 2
00H	6CH	Tag data byte /Tag 2
00H	6CH	Tag data byte /Tag 2
00H	20H	Tag data byte /Tag 2
FFH	FFH	Message Terminator
AAH	83H	Command Echo
00H	FCH	Serial Number byte /Tag 3
00H	C5H	Serial Number byte /Tag 3
00H	73H	Serial Number byte /Tag 3
00H	00H	Serial Number byte /Tag 3
00H	00H	Serial Number byte /Tag 3
00H	01H	Serial Number byte /Tag 3
00H	04H	Serial Number byte /Tag 3
00H	E0H	Serial Number byte /Tag 3
00H	32H	Tag data byte /Tag 3
00H	33H	Tag data byte /Tag 3
00H	34H	Tag data byte /Tag 3
FFH	FFH	Message Terminator

71

6.4.12 ABxS Command 84H: Fill Tag All

DESCRIPTION

Command 84H fills all RFID tags-in-field or all tags in the same family, with a one-byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one-byte value repetitively across a specified range of tag addresses. All tags within range of the antenna with the specified Family ID are affected by this command. The fill function requires one data value byte, a starting address, and a fill length. It then fills the tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. The fill length must be set to a non-zero value. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). The controller returns a response after the timeout expires. A response is returned when a successful operation is performed or when the timeout has expired. When the timeout is set to 0, the controller returns a syntax error.

Field	Remarks
Command	Command number in hex preceded by AAH
Family Code	Tag Family ID - 00H = all tags
Reserved Byte	00H
Start Address	Tag address where the fill will start
Fill Length	Number of tag addresses to be filled (1-48)
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)
Data Value Byte	Byte to be used as fill
Message Terminator	FFFFH

A response to a successful command follows this form:

Field	Remarks
Command Echo	Command number in hex preceded by AAH
Number of Tags Filled	Number of tags found in the field and filled
Command Status	One byte error status
Message Terminator	FFFFH

Example

Writes 'A' (41H) to all tags of family 01H, starting at tag address 0005H for the following next consecutive 40 bytes with four to eight tags expected in the field. A timeout of 2 seconds (07D0H = 2000×1 ms increments) is set for the completion of the Fill All Tag. Four tags are successfully filled within the timeout.

Command from Host		
MSB	LSB	Remarks
AAH	84H	Perform Command 84
01H	00H	Tag Family 01 / Reserved
00H	05H	Start Address
00H	28H	Fill Length
07H	D0H	2-second Timeout
00H	41H	Fill Byte
FFH	FFH	Message Terminator

Response from Controller		
MSB	LSB	Remarks
AAH	84H	Command Echo
04H	08H	Ntag/Status
FFH	FFH	Message Terminator

6.4.13 ABxS Command 85H: Read All

DESCRIPTION

Command 85H reads data from all RFID tags-in-field, or those tags with the specified Family ID.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of handling up to 1 kByte of data transferred to the host with one command. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller will return a syntax error message 21H. The Read All consists of Tag Family ID and Reserved Byte, a start address and number of bytes, followed by a timeout value and the message terminator, FFFFH. If the read length exceeds the last tag address, the controller returns a syntax error message 21H. The data read from the tag is returned in the LSB of the register, and the MSB is always 00H. A special termination packet (AAH FFH) is sent after the timeout expires. The controller returns a response after the timeout expires. The command returns a response after the successful operation or when the timeout expires.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Tag Family	Tag Family ID - 00H = all tags	
Reserved Byte	00H	
Start Address	Tag address where the read will start	
Read Length	Number of tag addresses to be read	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Message Terminator	FFFFH	

73

Reads four bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 ms increments) is set for the completion of the Read All. The Family ID byte is set to zero, so all tags are read. Three tags respond with read data.

Command from Host		
MSB	MSB LSB Remarks	
AAH	85H	Perform Command 85
00H	02H	Tag Family 00/ Index 2
00H	01H	Start Address
00H	04H	Read Length
07H	D0H	2-second Timeout
FFH	FFH	Message Terminator

Response from Controller		
MSB	LSB	Remarks
AAH	85H	Command Echo/Tag 1
00H	30H	Data byte 1/Tag 1
00H	31H	Data byte 2/Tag 1
00H	32H	Data byte 3/Tag 1
00H	33H	Data byte 4/Tag 1
FFH	FFH	Terminator/ Tag 1
AAH	85H	Command Echo/Tag 2
00H	40H	Data byte 1/Tag 2
00H	41H	Data byte 2/Tag 2
00H	42H	Data byte 3/Tag 2
00H	43H	Data byte 4/Tag 2
FFH	FFH	Terminator/ Tag 2
AAH	85H	Command Echo/Tag 3
00H	34H	Data byte 1/Tag 3
00H	35H	Databyte 2/Tag 3
00H	36H	Data byte 3/Tag 3
00H	37H	Data byte 4/Tag 3
FFH	FFH	Terminator/ Tag 3
AAH	FFH	Termination Packet
03H	08H	Ntag/Status
FFH	FFH	Terminator Message

6.4.14 ABxS Command 86H: Write All

DESCRIPTION

Command 86H writes data to all RFID tags, or all tags with the same Family ID.

DISCUSSION

This command is used to write segments of data to contiguous areas of tag memory. It is capable of transferring up to 1 kByte of data from the Host with one command. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The Write consists of a Tag Family ID and an Reserved Byte, start address followed by the data stream to be written to the RFID tag. If the write range exceeds the last tag address, the controller returns error message 21H, invalid format. The data to be written to the tag is contained in the LSB of the register, and the MSB is always 00H. The controller returns a response when the timeout expires.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Family ID	Tag Family ID - 00H = all tags	
Reserved	00H	
Start Address	Tag address where the write will start	
Write Length	Number of tag addresses to be written to in bytes	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Write Data	Data to be written	
Message	Terminator FFFFH	

Example

Writes four bytes of data, starting at address 0001H. A timeout of 2 seconds (07D0H = 2000×1 ms increments) is set for the completion of the Write. The Family ID byte is set to 2, so all tags with Family ID of 2 are written to (four tags in this example).

Command from host		
MSB	LSB	Remarks
AAH	86H	Perform Command 86
02H	00H	Tag Family/Reserved
00H	01H	Start Address
00H	04H	Write Length
07H	D0H	Timeout
00H	40H	Data byte 1
00H	41H	Data byte 2
00H	42H	Data byte 3
00H	43H	Data byte 4
FFH	FFH	Message Terminator

Response from controller		
MSB	LSB	Remarks
AAH	86H	Command Echo
04H	08H	Ntags/Status
FFH	FFH	Message Terminator

6.4.15 ABxS Command 87H: Read Tag SN All

DESCRIPTION

Command 87H retrieves the eight-byte tag serial number from all tags, or those with the specified Family ID number.

DISCUSSION

Each ISO-15693 compliant tag has an unique serial number (over 280 trillion possibilities). This number cannot be changed and is not part of the available data bytes. The tag serial number is returned in the LSB only, with the MSB as 00H. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. A special termination packet (starting with AAH FFH) is sent when the timeout expires. A response is returned after successful operation or after the timeout has expired.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Family ID	Tag Family ID - 00H = all tags	
Reserved	00H	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Message Terminator	FFFFH	

Example

This example reads the 8-byte serial number from Tag Family 2. In this example, the ID for the found tag is 1E6E3CD2000104E0H in hexadecimal. Multiple tags return a complete response packet for each tag.

Command from Host		
MSB	LSB	Remarks
AAH	87H	Perform Command 87
01H	00H	Family ID/Reserved
07H	D0H	2-second Timeout
FFH	FFH	Message Terminator

Response from Controller		
MSB	LSB	Remarks
AAH	87H	Command Echo
00H	1EH	First SN byte
00H	6EH	Second SN byte
00H	3СН	Third SN byte
00H	D2H	Fourth SN byte
00H	00H	Fifth SN byte
00H	01H	Sixth SN byte
00H	04H	Seventh SN byte
00H	E0H	Eighth SN byte
FFH	FFH	Message Terminator
AAH	FFH	Termination Packet
FFH	FFH	Message Terminator

6.4.16 ABxS Command 88H: Tag Search All

DESCRIPTION

Command 88H checks to see if there is an RFID tag within range of the antenna.

DISCUSSION

This command activates controller to look for a tag in range. As soon as the controller finds a tag it returns a command echo to the host. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The number of tags returned can be either 1 (tag found), or 0 (timeout expired without having found a tag).

Field	Remarks	
Command	Command number in hex preceded by AAH	
Family ID	Tag Family ID - 00H = all tags	
Reserved	00H	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Message Terminator	FFFFH	

Example

Checks for an RFID tag in the RF field. A timeout of 1 seconds (07D0H = 2000 x 1 ms increments) is set for the completion of the Tag Search. The Family ID is set for any tag. One tag is found and the command is successful.

Command from Host		
MSB	LSB	Remarks
AAH	88H	Perform Command 88
00H	00H	Family ID/Reserved
07H	D0H	2-second Timeout
FFH	FFH	Message Terminator

Response from Controller		
MSB	LSB	Remarks
AAH	88H	Command Echo
01H	08H	Ntags/Status
FFH	FFH	Message Terminator

6.4.17 ABxS Command 8BH: Write Family Code All

DESCRIPTION

Command 8BH can be used to write the family code of all tags in the field. It can also be used to selectively rewrite the family codes of tags with family codes already set to a particular value.

The command is formatted as shown below.

Field	Remarks		
Command	Command number in hex preceded by AAH		
Current Family Code	Current Tag Family Code		
Reserved	00H		
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)		
New Family Code	The value that will be written to the Family Codes of all the addressed tags		
Message Terminator	FFFFH		

Example

This example changes the family code depending on the current value of the family code. Two tags are found with family code 02H and are changed to 03H.

Command from Host		
MSB	LSB	Remarks
AAH	8BH	Perform Command 8BH
02H	00H	Family ID/Reserved
07H	D0H	2-second Timeout
00H	03H	New Family Code
FFH	FFH	Message Terminator

Response from Controller		
MSB LSB		Remarks
AAH	8BH	Command Echo
02H	08H	Ntags/Status
FFH	FFH	Message Terminator

6.4.18 ABxS Command 8CH: Lock Family Code All

DESCRIPTION

Command 8CH locks the family codes of tags in the field. Once locked, the family codes cannot be changed or unlocked.

DISCUSSION

The command must pass a family code to select the tags whose family code will be locked. The controller returns a response when the timeout period expires. The parameter of the response in the number of tags written.

The command is formatted as shown below:

Field	Remarks	
Command	Command number in hex preceded by AAH	
Family Code	Family Code, 00H = all tags	
Reserved	00H	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
Message Terminator	FFFFH	

Example

This example locks the family code on all tags with the family code 02H. Two tags are found and locked.

Command from Host		
MSB	LSB	Remarks
AAH	8CH	Perform Command 8CH
02H	00H	Family ID/Reserved
07H	D0H	2 second Timeout
FFH	FFH	Message Terminator

Response from Controller		
MSB LSB Re		Remarks
AAH	8CH	Command Echo
02H	08H	Ntags/Status
FFH	FFH	Message Terminator

6.4.19 ABxS Command 8DH: Start/Stop Continuous Read All

DESCRIPTION

Command 8DH starts and stops Continuous Read All mode for multiple tags.

DISCUSSION

The Start/Stop Continuous Read All mode is set by the length byte. To start Continuous Read All mode, send the command with valid, non-zero value for the length of the read. Stop the mode by sending the command with a read length of 0. While in this mode, any other command can be issued and will be handled properly. After processing the new command, the controller resumes the Continuous Read All mode. The command has a parameter, Repeat Count, that can prevent multiple reads of the same tag. A tag is not read a second time until a specified number of tags have been read since it was last read. Allowed values are from 0 to 255 (FFH), where 0 means the tag can be re-read anytime. When Continuous Read All mode is interrupted with other commands, the Repeat Count is saved during execution of the other commands, such that all tags respond to the interrupting command. When the controller resumes continuous reading, the Repeat Count is restored. The controller responds with an acknowledge packet followed by data packets for each tag read. The CONFIG LED blinks after each packet transmission.

Field	Remarks		
Command	Command number in hex preceded by AAH		
Family ID	Tag Family ID - 00H = all tags		
Reserved	00H		
Start Address	Tag address for the start of the read		
Read Length	Nonzero = start, 0000H = stop		
Repeat Count	Number of tag that must be read before the same tag will be read again (0-255)		
Message Terminator	FFFFH		

Example

Reads 4 bytes of data from the tag starting at address 0001H. The Family ID byte is set to zero so all tags will be read. The Tag Repeat Count is set to 20 (14H). Three tags respond with read data.

Comma	Command from Host		
MSB	LSB	Remarks	
AAH	8DH	Perform Command 8D	
00H	00H	Tag Family 00/Reserved	
00H	01H	Start Address	
00H	04H	Read Length	
00H	14H	Repeat Count	
FFH	FFH	Message Terminator	

Response from Controller			
MSB	LSB	Remarks	
AAH	8DH	Command Echo	
FFH FFH Message Terminator			

After the controller sends the acknowledgment, it sends the read data from the three tags.

Data response from controller

MSB	LSB	Remarks
AAH	8DH	Command Echo/Tag 1
00H	30H	Data byte 1/Tag 1
00H	31H	Data byte 2/Tag 1
00H	32H	Data byte 3/Tag 1
00H	33H	Data byte 4/Tag 1
FFH	FFH	Terminator/ Tag 1
AAH	8DH	Command Echo/Tag 2
00H	40H	Data byte 1/Tag 2
00H	41H	Data byte 2/Tag 2
00H	42H	Data byte 3/Tag 2
00H	43H	Data byte 4/Tag 2
FFH	FFH	Terminator/ Tag 2
AAH	8DH	Command Echo/Tag 3
00H	34H	Data byte 1/Tag 3
00H	35H	Data byte 2/Tag 3
00H	36H	Data byte 3/Tag 3
00H	33H	Data byte 4/Tag 1
FFH	FFH	Terminator/ Tag 1

81

6.4.20 ABxS Command 91H: Memory Lock All

DESCRIPTION

Command 91H locks contiguous blocks of read-write memory. Once bytes are locked, they cannot be written to, nor can they be unlocked.

DISCUSSION

The memory can be locked only in contiguous blocks. The command passes one parameter for the first block and another parameter for the number of blocks to be locked. This is one of only two ABx commands that address the memory of the tag using these parameters. The block structure of the tags is governed by the ISO-15693 specification. Attempting to write to locked bytes returns a Write Security Error.

The command is formatted as shown below.

Field	Remarks	
Command	Command number in hex preceded by AAH	
Family Code	Tag Family ID - 00H = all tags	
Reserved	00H	
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)	
First Block	First block of memory to lock	
Number of Blocks	Number of contiguous blocks of memory to lock	
Message Terminator	FFFFH	

Example

This example locks blocks 0-7 on all tags in range with the Family ID of 02H. Two tags are found and locked.

Command from Host		
MSB	LSB	Remarks
AAH	91H	Perform Command 91
02H	00H	Family ID/Reserved
07H	D0H	2-second Timeout
00H	08H	Lock Configuration
FFH	FFH	Message Terminator

Response from Controller		
MSB	LSB	Remarks
AAH	91H	Command Echo
02H	08H	Ntag/Status
FFH	FFH	Message Terminator

6.4.21 ABxS Command 94H: SN Fill

DESCRIPTION

Command 94H fills only the RFID tag specified by the serial number with a one-byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one-byte value repetitively across a specified range of tag addresses. Only the tag with the specified serial number is affected by this command. The controller returns a response after the successful fill operation or when the timeout expires. The fill function requires a Family ID and a Serial Number, one data value byte, a starting address, and a fill length. It fills the specified tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. When Fill Length is set to 0, the controller writes fill data from the start address to the end of the tag's memory. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. It returns a response when done or when the timeout expires.

Field	Remarks
Command	Command number in hex preceded by AAH
Family Code	Tag Family ID - 00H = all tags
Reserved	00H
Start Address	Tag address where the fill will start
Fill Length	Number of tag addresses to be filled
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)
Tag Serial Number	The 8-byte serial number
Data Value Byte	The byte used to fill
Message Terminator	FFFFH

A response to a successful command follows this form:

Field	Remarks		
Command	Echo Command number in hex preceded by AAH		
Number of Tags filled	0 = tag not found, 1 = tag filled		
Command Status	One byte Error status		
Message Terminator	FFFFH		

Writes 'A' (41H) to a single tag, starting at tag address 0005H for the next consecutive 40 bytes. The family code is set to 00H. A timeout of 2 seconds $(07D0H = 2000 \times 1 \text{ ms increments})$ is set for the completion of the command.

Command from Host				
MSB	LSB	Remarks		
AAH	94H	Perform Command 94		
00H	00H	Family ID/Reserved		
00H	05H	Start Address		
00H	28H	Fill Length		
07H	D0H	2-second Timeout		
00H	01H	SN byte 0		
00H	ACH	SN byte 1		
00H	42H	SN byte 2		
00H	D0H	SN byte 3		
00H	00H	SN byte 4		
00H	01H	SN byte 5		
00H	04H	SN byte 6		
00H	E0H	SN byte 7		
00H	41H	Fill byte		
FFH	FFH	Message Terminator		

Response from Controller				
MSB LSB Remarks				
AAH 94H Command Echo				
FFH FFH Message Terminator				

6.4.22 ABxS Command 95H: SN Read

DESCRIPTION

Command 95H reads data from a specified RFID tag.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of handling up to 48 bytes of data transferred to the host with one command if there is no tag Family ID. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The SN Read consists of a start address, length, and timeout value followed by a serial number. The eight-byte serial number of the target tag is specified. If the read length exceeds the last tag address, the controller will return error message in the status byte. It returns a response when done or when the timeout expires. The data read from the tag is returned in the LSB of the register, and the MSB is always 00H. A special error packet (AAH FFH) is sent if the timeout expires.

Field	Remarks
Command	Command number in hex preceded by AAH
Tag Family	Tag Family ID - 00H = all tags
Reserved	00H
Start Address	Tag address where the read will start
Read Length	Numbers of tag addresses to be read
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)
Tag Serial Number	The 8-byte tag serial number
Message Terminator	FFFFH

Example

Reads four bytes of data from the tag specified by serial number starting at address 0001H. A timeout of 2 seconds (07D0H = 2000×1 ms increments) is set for the completion of the SN Read. The Family ID byte is set to zero.

Command from Host				
MSB	LSB	Remarks		
AAH	95H	Perform Command 95		
00H	00H	Tag Family 00/Reserved		
00H	01H	Start Address		
00H	04H	Read Length		
07H	D0H	2-second Timeout		
00H	ABH	SN byte 0		
00H	02H	SN byte 1		
00H	F3H	SN byte 2		
00H	05H	SN byte 3		
00H	00H	SN byte 4		
00H	01H	SN byte 5		
00H	04H	SN byte 6		
00H	E0H	SN byte 7		
FFH	FFH	Message Terminator		

Response from Controller			
MSB LSB Remarks			
AAH	95H	Command Echo	
00H	30H	Data byte 1	
00H	31H	Data byte 2	
00H	32H	Data byte 3	
00H	33H	Data byte 4	
FFH	FFH	Message Terminator	

6.4.23 ABxS Command 96H: SN Write

DESCRIPTION

Command 96H writes data to a single RFID tag specified by its serial number.

DISCUSSION

This command writes segments of data to contiguous areas of tag memory. It is capable of transferring up to 1 kByte of data transferred from the host to the controller in a single command. The timeout value is given in 1 ms increments and can have a value of 001EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error.

The SN Write consists of a Family ID, start address, and Serial Number followed by the data stream to be written to the RFID tag. If the write range exceeds the last tag address, the controller returns a syntax error, 21H. It returns a response when done, or when the timeout expires.

The data to be written to the tag is contained in the LSB of the register, and the MSB is always 00H.

Field	Remarks
Command	Command number in hex preceded by AAH
Family ID	Tag Family ID - 00H = all tags
Reserved	00H
Start Address	Tag address where the write will start
Number of Bytes	Number of tag addresses to be written to
Timeout	Timeout value given in 1 ms units (001EH - FFFEH)
Tag Serial Number	The 8-byte tag serial number
Write Data	Data to be written (1 byte to 1 kByte)
Message Terminator	FFFFH

Writes four bytes of data, starting at address 0001H. A timeout of 2 seconds (07D0H = 2000×1 ms increments) is set for the completion of the Write. The Family ID Code is set to 00H.

Command from Host			
MSB	LSB	Remarks	
AAH	96H	Perform Command 96	
02H	00H	Tag Family 02/reserved	
00H	01H	Start Address	
00H	04H	Write Length	
07H	D0H	2-second Timeout	
00H	A4H	SN byte 0	
00H	6CH	SN byte 1	
00H	18H	SN byte 2	
00H	01H	SN byte 3	
00H	00H	SN byte 4	
00H	01H	SN byte 5	
00H	04H	SN byte 6	
00H	E0H	SN byte 7	
00H	40H	Data byte 1	
00H	41H	Data byte 2	
00H	42H	Data byte 3	
00H	43H	Data byte 4	
FFH	FFH	Message Terminator	

Response from Controller					
MSB LSB Remarks					
AAH	96H	SH Command Echo			
FFH FFH Message Terminator					

6.4.24 ABxS Command 10H: Set Output

DESCRIPTION

Command 10H sets the states of the output lines and output LEDs "A" through "D."

DISCUSSION

This command sets the state of the digital output lines using a one-byte parameter, Output Status. The least significant nibble of the Output Status Byte determines the status of the outputs. The least significant bit of this nibble corresponds to Output A. The most significant bit of this nibble corresponds to Output D. The most significant nibble of the Output Status Byte is reserved and should be set to 0H. An output bit set to one turns the corresponding LED on and closes the electronic switch of the output, allowing current to flow through the output circuit. An output bit reset to zero turns the corresponding LED off and opens the electronic switch in the output circuit. The following chart shows the hex values for all combinations of Output Status Bytes. To reset all output bits, issue the command with 00H for the Output Status Byte.

MSB	LSB	Remarks	LSB Bit 3 Output D	LSB Bit 2 Output C	LSB Bit 1 Output B	LSB Bit 0 Output A
00H	00H	Reset A, B, C, D	0	0	0	0
00H	01H	Set Output A - Reset B, C, D	0	0	0	1
00H	02H	Set Output B - Reset A, C, D	0	0	1	0
00H	03H	Set Output A, B - Reset C, D	0	0	1	1
00H	04H	Set Output C - Reset A, B, D	0	1	0	0
00H	05H	Set Output A, C - Reset B, D	0	1	0	1
00H	06H	Set Output B, C - Reset A, D	0	1	1	0
00H	07H	Set Output A, B, C - Reset D	0	1	1	1
00H	08H	Set Output D - Reset A, B, C	1	0	0	0
00H	09H	Set Output A, D - Reset B, C	1	0	0	1
00H	0AH	Set Output B, D - Reset A, C	1	0	1	0
00H	0BH	Set Output A, B, D - Reset C	1	0	1	1
00H	0CH	Set Output C, D - Reset A, B	1	1	0	0
00H	0DH	Set Output A, C, D - Reset B	1	1	0	1
00H	0EH	Set Output B, C, D - Reset A	1	1	1	0
00H	0FH	Set Output A, B, C, D	1	1	1	1

Example

Field	Remarks
Command	Command number in hex preceded by AAH
Output	Pattern hex value for the bit output settings
Message Terminator	FFFFH

The following example sets Output B only and resets A, C, and D.

Command from Host		
MSB	LSB	Remarks
AAH	10H	Perform Command 10
00H	02H	Set Output B
FFH	FFH	Message Terminator

Response from Controller		
MSB LSB Remarks		
AAH	10H	Command Echo
FFH	FFH	Message Terminator

6.4.25 ABxS Command 11H: Input Status

DESCRIPTION

Command 11H returns the status of user inputs.

DISCUSSION

This command interrogates the state of the user input lines and return a one-byte parameter, Input Status. The least significant nibble of the Input Status Byte is determined by the status of the outputs. The least significant bit of this nibble corresponds to Input A. The most significant bit of this nibble corresponds to input D. The most significant nibble of the Input Status Byte is set to 0H. A closed circuit in one of the user inputs sets the corresponding user input bit to one, turning the corresponding LED on. An open circuit in one of the user inputs sets the corresponding User Input bit to zero, turning off the corresponding LED. The following chart shows all of the valid hex values for the Input Status bytes.

MSB	LSB	Remarks	LSB Bit 3 Input D	LSB Bit 2 Input C	LSB Bit 1 Input B	LSB Bit 0 Input A
00H	00H	Inputs A, B, C, D, OFF	0	0	0	0
00H	01H	Input A, ON - B, C, D, OFF	0	0	0	1
00H	02H	Input B, ON - A, C, D, OFF	0	0	1	0
00H	03H	Input A, B, ON - C, D, OFF	0	0	1	1
00H	04H	Input C, ON - A, B, D, OFF	0	1	0	0
00H	05H	Input A, C, ON - B, D, OFF	0	1	0	1
00H	06H	Input B, C, ON - A, D, OFF	0	1	1	0
00H	07H	Input A, B, C, ON - D, OFF	0	1	1	1
00H	08H	Input D, ON - A, B, C, OFF	1	0	0	0
00H	09H	Input A, D, ON - B, C, OFF	1	0	0	1
00H	0AH	Input B, D, ON - A, C, OFF	1	0	1	0
00H	0BH	Input A, B, D, ON - C, OFF	1	0	1	1
00H	0CH	Input C, D, ON - A, B, OFF	1	1	0	0
00H	0DH	Input A, C, D, ON - B, OFF	1	1	0	1
00H	0EH	Input B, C, D, ON - A, OFF	1	1	1	0
00H	0FH	Input A, B, C, D, ON	1	1	1	1

Field	Remarks
Command	Command number in hex preceded by AAH
Message Terminator	FFFFH

Example

The following example shows only Input B is ON.

Command from Host		
MSB	LSB	Remarks
AAH	11H	Perform Command 11
FFH	FFH	Message Terminator

Response from Controller		
MSB LSB Remarks		
AAH	11H	Command Echo
00H	02H	Input B ON
FFH	FFH	Message Terminator

6.5 ABx Fast Protocol

The ABx Fast protocol differs from the Abx Standard Protocol in that the atomic data element is a byte instead of a 16-bit word. ABx Fast commands and responses also contain a two-byte word to indicate the size of the packet being sent. ABx Fast also supports the use of a one-byte checksum.

Packet Size

The ABx Fast protocol requires that the size of the packet be included following the terminator in every packet. All parameters and data between the packet size byte and the checksum (if used), or terminator bytes (if not using the checksum) must be accounted for in the packet size word. The packet size will be the same with or without a checksum.

Checksum

The optional checksum must be enabled from the operating mode menu to be available. The checksum is calculated by adding all the byte values in the packet (less the values in the header, checksum if present, and terminator), discarding byte overflow, and subtracting the byte sum from FFH. Thus, when the packet length through the checksum are added as byte values, the sum will be FFH.

Example

The following is a typical command using a checksum.

Field	Contents
Header	0202H
Command Size	0003H
Command Code	01H
Timeout	07D0H
Checksum	24H
Terminator	03H

The summed values begin with the Command Size and end with the timeout value. That sum, less overflow, is subtracted from FFH for the checksum value.

Thus:

00H + 03H + 01H + 07H + D0H = DBH

FFH - DBH = 24H

ABx Fast Single Tag Command Structure

Field	Number of Bytes	Content	
Header	2	0202H	
Command Size	2	Packet length in bytes excluding the header, command size, checksum, and terminator bytes	
Command	1	Command code	
Byte Addresses	4	The first two bytes give the start address. The second two bytes give the length of the address range. Not used on commands 07H, 08H, 14H, 16H	
Block Addresses	2	The first byte gives the address of the first block. The second byte gives the number of blocks to be interrogated. Only used with command 14H	
Timeout	2	0001H to FFFEH milliseconds	
Data	varies	Command data	
Checksum	1	Optional checksum	
Terminator	1	03H	

ABx Fast Multi-tag Command Structure

Field	Number of Bytes	Content	
Header	2	0202H	
Command Size	2	Packet length in bytes excluding the header, command size, checksum and terminator bytes.	
Command	1	Command code	
Family code	1	00H to address all tags in field	
Reserved	1	Reserved for future use, set to 00H	
Address	4	The first two bytes give the start address. The second two bytes give the length of the address range. Not used on commands 87H, 88H, 91H, 8BH, 8CH	
Block Addresses	2	The first byte gives the address of the first block. The second byte gives the number of blocks to be interrogated. Only used with command 14H	
Timeout	2	0001H to FFFEH milliseconds	
Data	varies	Command data	
Checksum	1	Optional checksum	
Terminator	1	03H	

6.5.1 ABxF Command 04H: Fill Tag

DESCRIPTION

Command 04H fills an RFID tag with a one-byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one-byte value repetitively across a specified range of tag addresses. The fill function requires one data value byte, a starting address, and a fill length. It fills the tag with the data value Byte, starting at the specified start address for the specified number of consecutive bytes. When Fill Length is set to 0, the controller writes fill data from the start address to the end of the tag's memory. The timeout value is given in 1 ms increments and can have a value of 1EH to FFFEH (65,534 ms). The controller returns a syntax error (error 21H) when the timeout is set to 0, and when the Fill Length extends beyond the last byte in the tag.

Field	Content	
Header	0202H	
Command Size	Packet length in Bytes excluding the header, command size, checksum, and terminator bytes. 0008H for this command.	
Command	04H	
Start Address	2-byte value for the starting tag address	
Number of Bytes	2-byte value for the length of the fill in number of Bytes	
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFEH) Bytes	
Data Value Byte	1-byte value to be written to all the addressed Bytes	
Checksum	Optional checksum	
Terminator	03H	

A response to a successful command follows this form:

Field	Content	
Header	0202H	
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes.	
Command Echo	04H	
Checksum	Optional checksum	
Terminator	03H	

Writes 'A' (41H) to the tag starting at address 0005H and continuing for the next consecutive 40 bytes. A timeout of 2 seconds (07D0H = 2000×1 ms increments) is set for the completion of the configuration.

Command from Host	
Field	Content
Header	0202H
Command Size	H8000
Command Code	04H
Start address	0005H
Size	0028H
Timeout, 2 seconds	07D0H
Data Value Byte	41H
Checksum	AEH
Terminators	03H

Response from Controller	
Field	Content
Header	0202H
Response Size	0001H
Command Echo	04H
Checksum	FAH
Terminators	03H

6.5.2 ABxF Command 05H: Read

DESCRIPTION

Command 05H reads data from an RFID tag.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of handling up to 1 kByte of data transferred to the host. The timeout value is given in 1 ms increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns error 21H, syntax error. The Read consists of a start address and length, followed by a timeout value, and a message terminator as shown below.

Field	Content
Header	0202H
Command Size	Packet length in Bytes excluding the header, command size, checksum and terminator bytes. 0007H for this command
Command	05H
Start Address	2-byte value for the starting tag address
Number of Bytes	2-byte value for the length of the read in number of bytes
Timeout	2-byte value for timeout in 1 ms units (1EH - FFFEH)
Checksum	Optional checksum
Terminator	03H

Reads four bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 ms increments) is set for the completion of the Read.

Command from Host	
Field	Content
Header	0202H
Command Size	0007H
Command Code	05H
Start Address	0001H
Number of Bytes	0004H
Timeout, 2 seconds	07D0H
Checksum	17H
Terminator	03H

Response from Controller	
Field	Content
Header	0202H
Response Size	0005H
Command Echo	05H
Data from address 0001H	05H
Data from address 0002H	AAH
Data from address 0003H	E7H
Data from address 0004H	0AH
Checksum	55H
Terminator	03H

6.5.3 ABxF Command 06H: Write

DESCRIPTION

Command 06H writes data to an RFID tag.

DISCUSSION

The Write command is used to write segments of data to contiguous areas of tag memory. It is capable of addressing 1 kByte of the read/write address space of a tag in a single command. The BlockWrite command requires as parameters the start address, the number of bytes to be written, and the data to be written to the RFID tag. If the write range exceeds the last tag address, the controller returns an invalid format error message (error code 21H).

Field	Content
Header	0202H
Packet Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. 0007H plus the number of data bytes
Command	06H
Start Address	2-byte value for the starting tag address
Number of Bytes	2-byte value for the number of bytes that will be written
Timeout	2-byte value for timeout in 1 ms units (1EH - FFFEH)
Data	Data bytes to be written
Checksum	Optional checksum
Terminator	03H

Writes four bytes of data to the tag starting at address 0000H. A timeout of 2 seconds (07D0H = 2000×1 ms increments) is set for the completion of the Write.

Command from Host	
Field	Content
Header	0202H
Command Size	000BH
Command Code	06H
Start Address	0000H
Number of Bytes	0004H
Timeout, 2 seconds	07D0H
Data to write to address 0000H	52H
Data to write to address 0001H	46H
Data to write to address 0002H	49H
Data to write to address 0003H	44H
Checksum	EEH
Terminators	03H

Response from Controller	
Field	Content
Header	0202H
Response Size	0001H
Command Echo	06H
Checksum	F8H
Terminators	03H

6.5.4 ABxF Command 07H: Read Tag Serial Number

DESCRIPTION

Command 07H retrieves the eight-byte tag serial number.

DISCUSSION

Each ISO-15693 compliant tag has a unique serial number (over 280 trillion possibilities). This number cannot be changed and is not part of the available read/write address space of a tag.

CAUTION: The presence of multiple tags in the field will not cause errors, however there is no general way to predict which tag the controller will read first.

Field	Content
Header	0202H
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes. 0003H for this command
Command	07H
Timeout	2-byte timeout value in 1 ms increments (1EH - FFFEH)
Checksum	Optional checksum
Terminator	03H

This example waits until a tag is in range and then reads the eight-byte serial number. In this example, the serial number is F2720300000104E0.

Command from Host	
Field	Content
Header	0202H
Command Size	0003H
Command Code	07H
Timeout	07D0H
Checksum	1EH
Terminators	03H

Response from Controller	
Field	Content
Header	0202H
Response Size	0009H
Command Echo	07H
First ID Byte	F2H
Second ID Byte	72H
Third ID Byte	03H
Fourth ID Byte	00H
Fifth ID Byte	00H
Sixth ID Byte	01H
Seventh ID Byte	04H
Eighth ID Byte	E0H
Checksum	АЗН
Terminators	03H

6.5.5 ABxF Command 08H: Tag Search

DESCRIPTION

Command 08H checks for an RFID tag in the controller field.

DISCUSSION

This command activates the controller to "look" for a tag in the RF field. If the controller finds a tag, it returns a command echo to the host. If no tag is present, it returns an error message. Even though this command is grouped with single tag commands, the presence of multiple tags within range of the antenna will not cause errors. See Section 6.6 for information on the error messages.

Field	Content
Header	0202H
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes. 0003H for this command
Command	08H
Timeout	2-byte value for the time in 1 ms units (1EH - FFFEH)
Checksum	Optional checksum
Terminator	03H

Checks for an RFID tag within range of the antenna. A timeout of 2 seconds $(07D0H = 2000 \times 1 \text{ ms})$ increments) is set for the completion of the Tag Search.

Command from Host	
Field	Content
Header	0202H
Command Size	0003H
Command Code	08H
Timeout	07D0H
Checksum	1DH
Terminators	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0001H	
Command Echo	08H	
Checksum	F6H	
Terminators	03H	

6.5.6 ABxF Command 0DH: Start/Stop Continuous Read

DESCRIPTION

Command 0DH sends reads continuously to any tag in range of the antenna. When a tag enters the RF field, it is read and the data passed to the host computer. The controller continues to read the tag, but will not send the same data to the host until the tag has been outside the RF field for a specified time period. This Delay Between Identical Decodes parameter prevents redundant data transmissions when the controller is in Continuous Read mode.

DISCUSSION

The Start/Stop Continuous Read command contains three parameters: Start Address, Number of Bytes, and Delay Between Duplicate Decodes. The read length parameter switches the mode. Any valid, non-zero length will set the controller into Continuous Read mode. A read length value of 00H stops the Continuous read. The Delay Between Identical Decodes parameter can have a value of 0 to 60 seconds. When the Delay Between Identical Decodes is set to 0, the controller continuously reads and transmits tag data to the host. This can flood the buffers and cause communication errors and data loss. If the controller receives other commands from the host, it executes them and then resumes Continuous Read mode. Issuing the command with the Number of Bytes set to 00H stops the Continuous Read.

The command is formatted as follows:

Field	Content
Header	0202H
Command Size	Command length in bytes excluding the header, command size, checksum, and terminator bytes.
Command	ODH
Start Address	2-byte value for the start address in the tag
Number of Bytes	2-byte value of the number of bytes to be addressed.
Delay Between Duplicate Decodes	Delay value given in 1 second units
Checksum	Optional checksum
Terminator	03H

This example places the controller in Continuous Read mode and reads eight bytes of data from the tag, starting at address 0001H. A delay between identical reads of 2 seconds ($0002H = 2 \times 1$ second increments) is set.

Command from Host	
Field	Content
Header	0202H
Command Size	0006H
Command Code	0DH
Start Address	0001H
Number of Bytes	0008H
Delay Between Duplicate Decodes	02H
Checksum	E1H
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0001H	
Command Echo	0DH	
Checksum	F1H	
Terminator	03H	

6.5.7 ABxF Command 14H: Get Memory Status

DESCRIPTION

Command 14H returns the lock status of the specified blocks of data.

DISCUSSION

This command can be used to determine whether blocks of tag memory are locked (marked read-only). The number of specified contiguous blocks are addressed from the specified first block. The response from the controller gives the status of each block through a one-byte value. The value is 00H if the block is unlocked, 01H if locked.

Field	Content
Header	0202H
Command Size	Packet length in bytes excluding the header, command size, command, checksum, and terminator bytes. 0005H for this command
Command	14H
First Block	One-byte address of the first block to be Interrogated.
Number of blocks	One-byte
Timeout	2-byte value for timeout in 1 ms units (1EH - FFFEH)
Checksum	Optional checksum
Terminator	03H

Command from Host	
Field	Content
Header	0202H
Command Size	0005H
Command Code	14H
First Block	00H
Number of Blocks	04H
Timeout, 2 seconds	07D0H
Checksum	0BH
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0005H	
Command Echo	14H	
Status of Block Zero	00H	
Status of Block One	00H	
Status of Block Two	01H	
Status of Block Three	00H	
Checksum	E5H	
Terminator	03H	

6.5.8 ABxF Command 16H: Write Family Code

DESCRIPTION

Command 16H changes the family code of an RFID tag.

Field	Content
Header	0202H
Packet Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes. Always 0004H for this command.
Command	16H
Timeout	2-byte value for timeout in 1 ms units (1EH - FFFEH)
Family Code	The value to which the family code will be changed.
Checksum	Optional checksum
Terminator	03H

Example

This example change the family code of the tag to 00H.

Command from Host	
Field	Content
Header	0202H
Command Size	0004H
Command Code	16H
Timeout	07D0H
Family Code	00H
Checksum	FCH
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0001H	
Command Echo	16H	
Checksum	E8H	
Terminator	03H	

6.5.9 ABxF Command 17H: Lock Family Code

DESCRIPTION:

Command 17H locks the family code byte to its current value, so that it cannot be written. Once locked, the family code cannot be unlocked.

Command from Host	
Field	Content
Header	0202H
Command Size	0003H
Command Code	17H
Timeout, 2 seconds	07D0H
Checksum	0EH
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0001H	
Command Echo	17H	
Checksum	E7H	
Terminator	03H	

6.5.10 ABxF Command 82H: Read Data and SN All

DESCRIPTION

Command 82H reads a block of data from all RFID tags-in-field or all those with the specified family code. Data is returned with the serial number of the corresponding tag.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It handles up to 1KByte of data transferred to the host with one command. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The response to this command contains the serial number of the responding tags preceding the data from those tags. The termination packet is transmitted when the timeout expires. Each packet is sent to the host as soon as it is available. The returned serial numbers can be used to read from or to write to tags-in-field via the SN Block Read or Write commands. The SN Block Read All consists of a header, a family code, a start address and length, followed by a timeout value and the message terminator, 03H, as shown below. A special termination packet is sent when the timeout expires. If the read range exceeds the last tag address, the controller returns an error message in the status byte.

The command is formatted as follows:

Field	Content
Header	0202H
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes.
Command	82H
Family Code	Tag Family Code - 00H = all tags
Reserved	Ignored byte, set to 00H
Start Address	2-byte value for the starting tag address
Number of Bytes	2-byte value for the number of bytes to be read
Timeout	2-byte value for timeout in 1 ms units (1EH - FFFEH)
Checksum	Optional checksum
Terminator	03H

This example reads four bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec) is set for the completion of the SN Block Read All. The Tag Family Byte is set to zero so all tags will be read. Three tags respond with data.

Command from Host		
Field	Content	
Header	0202H	
Command Size	0009H	
Command Code	82H	
Family Code	03H	
Reserved	00H	
Start Address	0000H	
Block Size	0004H	
Timeout, 2 seconds	07D0H	
Checksum	96H	
Terminators <etx></etx>	03H	

Response from Controller		
Field	Content	
Header/tag 1	0202H	
Response Size	000DH	
Command Echo	82H	
SN Byte 1/tag 1	A6H	
SN Byte 2/ tag 1	72H	
SN Byte 3/tag 1	03H	
SN Byte 4/tag 1	00H	
SN Byte 5/tag 1	00H	
SN Byte 6/tag 1	01H	
SN Byte 7/tag 1	04H	
SN Byte 8/tag 1	E0H	
Data Byte 1/ tag 1	52H	
Data Byte 2/tag 1	46H	
Data Byte 3/tag 1	49H	
Data Byte 4/tag 1	44H	
Checksum	4BH	
Terminator	03H	
Header/tag 2	0202H	
Response Size	000DH	
Command Echo	82H	
SN Byte 1/tag 2	F1H	
SN Byte 2/ tag 2	72H	
SN Byte 3/tag 2	03H	
SN Byte 4/tag 2	00H	
SN Byte 5/tag 2	00H	
SN Byte 6/tag 2	01H	
SN Byte 7/tag 2	04H	
SN Byte 8/tag 2	E0H	
Data Byte 1/ tag 2	52H	
Data Byte 2/tag 2	46H	
Data Byte 3/tag 2	49H	
Data Byte 4/tag 2	44H	
Checksum	00H	
Terminator	03H	
Header/tag 3	0202H	
Response Size	000BH	
Command Echo	82H	

101

Response from Controller		
Field	Content	
SN Byte 1/tag 3	71H	
SN Byte 2/ tag 3	72H	
SN Byte 3/tag 3	03H	
SN Byte 4/tag 3	00H	
SN Byte 5/tag 3	00H	
SN Byte 6/tag 3	01H	
SN Byte 7/tag 3	04H	
SN Byte 8/tag 3	E0H	
Data Byte 1/ tag 3	53H	
Data Byte 2/tag 3	48H	
Data Byte 3/tag 3	49H	
Data Byte 4/tag 3	54H	
Checksum	6FH	
Terminator	03H	
Header	0202H	
Response Size	0003H	
Command Status	FFH	
Number of tags	03H	
Status Byte	08H	
Checksum	F2H	
Terminators <etx></etx>	03H	

6.5.11 ABxF Command 83H: Start/Stop Continuous SN Read All

DESCRIPTION

Command 83H starts and stops continuous read all mode for multiple tags. It reads the serial number and tag data. While in this mode, any other command can be issued and it will be handled properly. After processing the interrupting command, the controller resumes the continuous read. Continuous SN Read All is started or stopped through a unique parameter, Start Continuous Read. This parameter is set to 01H to initiate the Continuous Read, and set to zero to stop it. The command uses the parameter Tag Repeat Count to limit multiple reads of the same tag. A tag is not read a second time until this specified number of tags have been read since it was last read. Allowed values are from 0 to 255 (FFH), where 0 means the tag can be reread anytime. When Start/Stop Continuous SN Read All is interrupted with another command, the repeat count is saved during execution of the other commands, allowing any tag to be addressed by the interrupting command. Upon completion of the interrupting command, the value of the Tag Repeat Count is restored. The Reader/Writer responds after receipt of the command with an acknowledge packet. This is followed by data packets for each tag read.

Field	Content
Header	0202H
Command Size	Command length in bytes excluding the header, command size, checksum, and terminator bytes.
Command	83H
Family Code	Tag Family Code - 00H = all tags
Reserved	Ignored byte, set to 00H
Start Address	2-byte address for the first byte to be read.
Number of Bytes	Number of bytes to be read from the tag.
Tag Repeat Count	Number of tags to be read before data is returned twice from any individual tag
Start/Stop Continuous Read	01H to start continuous read, 00H to stop
Checksum	Optional checksum
Message Terminator	03H

103

Starts continuous read of three bytes starting at address two, has a repeat count of four, and the family code is set to 00H, so that all tags in the field respond.

Command from Host	
Field	Content
Header	0202H
Command Size	0008H
Command Code	83H
Family Code	00H
Reserved	00H
Start Address	0002H
Number of Bytes	0003H
Repeat Count	04H
Start	01H
Checksum	6AH
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0001H	
Command Echo	83H	
Checksum	7BH	
Terminator	03H	

After the controller sends the acknowledgement, it sends the data read from the tags in the field.

Response from controller

Field	Content
Header	0202H
Response Size	000BH
Command Echo/Tag 1	83H
SN Byte 1/tag 1	A6H
SN Byte 2/ tag 1	72H
SN Byte 3/tag 1	03H
SN Byte 4/tag 1	00H
SN Byte 5/tag 1	00H
SN Byte 6/tag 1	01H
SN Byte 7/tag 1	04H
SN Byte 8/tag 1	E0H
Data from Address 0002H	AAH
Data from Address 0003H	21H
Data from Address 0004H	44H
Checksum	62H
Terminator	03H

Field	Content
Header	0202H
Response Size	000BH
Command Echo/Tag 2	83H
SN Byte 1/tag 2	F1H
SN Byte 2/ tag 2	72H
SN Byte 3/tag 2	03H
SN Byte 4/tag 2	00H
SN Byte 5/tag 2	00H
SN Byte 6/tag 2	01H
SN Byte 7/tag 2	04H
SN Byte 8/tag 2	E0H
Data from Address 0002H	AAH
Data from Address 0003H	21H
Data from Address 0004H	44H
Checksum	62H
Terminator	03H

Field	Content
Header	0202H
Response Size	000BH
Command Echo/Tag 3	83H
SN Byte 1/tag 3	71H
SN Byte 2/ tag 3	72H

Field	Content
SN Byte 3/tag 3	03H
SN Byte 4/tag 3	00H
SN Byte 5/tag 3	00H
SN Byte 6/tag 3	01H
SN Byte 7/tag 3	04H
SN Byte 8/tag 3	E0H
Data from Address 0002H	AAH
Data from Address 0003H	21H
Data from Address 0004H	44H
Checksum	62H
Terminator	03H

6.5.12 ABxF Command 84H: Fill All

DESCRIPTION

Command 84 H fills all RFID tags-in-field or all tags in the same family, with a one-byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one-byte value repetitively across a specified range of tag addresses. All tags present in the antenna field with the specified family code are affected by this command. The Fill All function requires one data value byte, a start address, and a number of bytes to fill. It fills the tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. The fill length must be set to a non-zero value. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error.

Field	Content
Header	0202H
Packet Size	Packet length in bytes excluding the header, packet size, checksum, and terminator bytes. 0008H for this command
Command	84H
Family Code	Tag Family Code - 00H = all tags
Reserved	Ignored byte, set to 00H
Start Address	2-byte value for the starting tag address
Fill Length	2-byte value for the length of the fill in number of Bytes (1-48)
Timeout	2-byte value for timeout in 1 ms units (1EH - FFFEH)
Data value Byte	1 byte of fill
Checksum	Optional checksum
Terminator	03H

Writes 41H—the ASCII character "A"—to all tags with family code 03H, starting at address 0005H for the next consecutive 40 Bytes. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the configuration. In this example, four tags are found and filled successfully.

Command from Host	
Field	Content
Header	0202H
Command Size	000AH
Command Code	84H
Family Code	03H
Reserved	00H
Start Address	0005H
Number of Bytes	0028H
Timeout, 2 seconds	07D0H
Data Value Byte	41H
Checksum	27H
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0003H	
Command Echo	84H	
Numbers of Tags	04H	
Status Byte	08H	
Checksum	6CH	
Terminator	03H	

6.5.13 ABxF Command 85H: Block Read All

DESCRIPTION

Command 85H reads a block of data from all RFID tags-in-field or all those with the specified family code.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The Block Read All consists of a family code, the reserved byte, a start address and length, followed by a timeout value, and a message terminator as shown below. If the read length exceeds the last tag address, the controller returns an syntax error message (error code 21H). A special termination packet is sent when the timeout expires. A response is returned after successful completion of the operation or when the timeout expires.

Field	Content
Header	0202H
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes.
Command	85H
Family Code	Tag Family Code - 00H = all tags
Reserved	Ignored byte, set to 00H
Start Address	2-byte value for the starting tag address
Number of Bytes	2-byte value for the number of bytes to be read
Timeout	2-byte value for timeout in 1 ms units (1EH - FFFEH)
Checksum	Optional checksum
Terminator	03H

Reads four bytes of data from tags with Family ID AAH, starting at address 0001H. A timeout of 2 seconds $(07D0H = 2000 \times 1)$ msec increments) is set for the completion of the Block Read All. The family code is set to zero so all tags will be read.

Command from Host	
Field	Content
Header	0202H
Command Size	0009H
Command Code	85H
Family Code	00H
Reserved	00H
Start Address	0001H
Length of Read	0002H
Timeout, 2 seconds	07D0H
Checksum	EBH
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0003H	
Command Echo/Tag 1	85H	
Data from Address 0001H	05H	
Data from Address 0002H	AAH	
Checksum	C8H	
Terminator	03H	
Header	0202H	
Response Size	0003H	
Command Echo/Tag 2	85H	
Data from Address 0001H	05H	
Data from Address 0002H	AAH	
Checksum	C8H	
Terminator	03H	
Header	0202H	
Response Size	0003H	
Command Status	FFH	
Number of Tags	02H	
Status Byte	08H	
Checksum	F3H	
Terminator	03H	

6.5.14 ABxF Command 86H: Block Write All

DESCRIPTION

Command 86H writes a block of data to an RFID tag.

DISCUSSION

The Block Write All command is used to write segments of data to contiguous areas of tag memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The Block Write All consists of a Family ID, the reserved byte, a tart address, and the number of bytes, followed by the bytes to be written to the RFID tag. If the write range exceeds the last tag address, the controller returns a syntax error message (error code 21H). The controller returns a response when the timeout expires.

Field	Content	
Header	0202H	
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes. 0009H plus the number of data bytes	
Command	86H	
Family ID	Tag Family ID - 00H = all tags	
Reserved	Ignored byte, set to 00H	
Start Address	2-byte value for the starting tag address	
Number of Bytes	2-byte value for the number of bytes to be written	
Timeout	2-byte value for timeout in 1 ms units (1EH - FFFEH)	
Data	Bytes of data to be written	
Checksum	Optional checksum	
Terminator	03H	

109

Writes four bytes of data to the tag starting at address 0000H. A timeout of 2 seconds (07D0H = 2000×1 msec increments) is set for the completion of the Block Write All. Family ID is set to 00H so all tags-in-field are written to. In this example, the LRP2000 write to five tags.

Command from Host	
Field	Content
Header	0202H
Command Size	000DH
Command Code	86H
Family ID	00H
Reserved	00H
Start Address	0000H
Number of Bytes	0004H
Timeout, 2 seconds	07D0H
Data to Write to Address 0000H	52H
Data to Write to Address 0001H	46H
Data to Write to Address 0002H	49H
Data to Write to Address 0003H	44H
Checksum	68H
Terminator	03H

Response from Controller	
Field	Content
Header	0202H
Response Size	0003H
Command Echo	86H
Number of Tags	05H
Status Byte	08H
Checksum	69H
Terminator	03H

6.5.15 ABxF Command 87H: Read Tag SN All

DESCRIPTION

Command 87H retrieves the eight-byte tag serial number from all tags-in-field or those with the specified Family ID.

DISCUSSION

Each ISO-15693 compliant tag has an unique serial number (over 280 trillion possibilities). This number can not be changed and is not part of the available read/write address space. A special termination packet is sent when the timeout expires. A response is returned when the timeout expires.

Field	Content
Header	0202H
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes. 0005H for this command
Command	87H
Family ID	Tag Family ID - 00H = all tags
Reserved	Ignored byte, set to 00H
Timeout 2-Byte	timeout value in 1 ms increments (1EH - FFFEH)
Checksum	Optional checksum
Terminator	03H

This example reads the eight-byte serial number from all tags permitted by the Family ID and Reserved. In this example, one tag responds and the serial number is F20300000104E0H.

Command from Host	
Field	Content
Header	0202H
Command Size	0005H
Command Code	87H
Family ID	00H
Reserved	01H
Timeout	07D0H
Checksum	9BH
Terminator	03H

Response from Controller	
Field	Content
Header	0202H
Response Size	0009H
Command Echo	87H
SN Byte 1	F2H
SN Byte 2	03H
SN Byte 3	00H
SN Byte 4	00H
SN Byte 5	00H
SN Byte 6	01H
SN Byte 7	04H
SN Byte 8	E0H
Checksum	95H
Terminator	03H
Header	0202H
Response Size	0003H
Command Status	FFH
Number of Tags	01H
Status Byte	08H
Checksum	F4H
Terminator	03H

6.5.16 ABxF Command 88H: Tag Search All

DESCRIPTION

Command 88H searches for tags within range of the antenna.

DISCUSSION

This command activates the controller to look for tags within range of the antenna. As soon as the controller finds a tag, it returns a command echo to the host. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). If no tag is present, it returns an error message. See Section 6.6 for information on the error messages.

Field	Content
Header	0202H
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes. 0005H for this command
Command	88H
Family ID	Tag Family ID - 00H = all tags
Reserved	Ignored byte, set to 00H
Timeout	2-byte value for the time in 1 ms units (1EH - FFFEH)
Checksum	Optional checksum
Terminator	<etx></etx>

Example

Checks for the presence of an RFID tag within range of the antenna. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Tag Search All. In this example, a tag is found.

Command from Host	
Field	Content
Header	0202H
Command Size	0005H
Command Code	88H
Family ID	00H
Reserved	00H
Timeout	07D0H
Checksum	99H
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0003H	
Command Echo	88H	
Number of Tags	01H	
Status Byte	08H	
Checksum	73H	
Terminators	03H	

6.5.17 ABxF Command 8DH: Stop/Start Continuous Read All

DESCRIPTION

Command 8DH starts and stops continuous read mode for multiple tags.

DISCUSSION

The Start/Stop Continuous Read All mode is initiated by issuing the command with the Number of Bytes set to any valid nonzero value. Stop the mode by sending the command with a read length of 0. While in this mode, any other command can be issued and will be handled properly. After processing the new command, the controller resumes the Continuous Read All mode.

The command has a parameter, Tag Repeat Count, that can prevent multiple reads of the same tag. A tag is not read a second time until a specified number of tags have been read since the tag was last read. Allowed values are from 0 up to 255 (FFH), where 0 means the tag can be re-read anytime. When Continuous Read All mode is interrupted with other commands, the tag delay count is cleared during execution of the other commands and then resumed. When the continuous read mode resumes, all previously read tags will be read again. The controller responds with an acknowledge packet followed by data packets for each tag read. The CONFIG LED blinks after each packet transmission.

Field	Content
Header	0202H
Command Size	Command length in bytes excluding the header command size, checksum, and terminator bytes.
Command	8DH
Family ID	Tag Family ID - 00H = all tags
Reserved	Ignored byte, set to 00H
Start Address	Tag address for the start of the read
Number of Bytes	0 = stop. Any valid nonzero value indicates the number of bytes to be read
Tag Repeat Count	Number of tags that must be read before the same tag is read again (0-255)
Checksum	Optional checksum
Message Terminator	03H

Example

Reads four bytes of data from the tag starting at address 0001H. The Family ID byte is set to zero, so all tags are read. The tag repeat count is set to 20 (14H). Two tags respond with read data.

Command from Host	
Field	Content
Header	0202H
Command Size	H8000
Command Code	8DH
Family ID	00H
Reserved	00H
Start Address	0001H
Read Length	0004H
Tag Repeat Count	14H
Checksum	50H
Terminator	03H

Response from Controller	
Field	Content
Header	0202H
Response Size	0001H
Command Echo	8DH
Checksum	71H
Terminator	03H

After the controller sends the acknowledgment, it sends the read data from the two tags.

Field	Content
Header	0202H
Response Size	0005H
Command Echo/Tag 1	8DH
Data from Address 0001H	05H
Data from Address 0002H	AAH
Data from Address 0003H	21H
Data from Address 0004H	44H
Checksum	59H
Terminator	03H
Header	0202H
Response Size	0003H
Command Echo/Tag 2	8DH
Data from Address 0001H	05H
Data from Address 0002H	AAH
Data from Address 0003H	21H
Data from Address 0004H	44H
Checksum	59H
Terminator	03H

6.5.18 ABxF Command 91H: Memory Lock All

DESCRIPTION

Command 91H locks contiguous blocks of read-write memory. Once bytes are locked, they cannot be written to, nor can they be unlocked.

DISCUSSION

The memory can be locked only in contiguous blocks. The command passes one parameter for the first block, and another parameter for the number of blocks to be locked. This is one of only two ABx commands that address the memory of the tag using these parameters. The block structure of the tags is governed by the ISO-15693 specification. ABx command 15H can be used to obtain the memory organization for a particular tag. Attempting to write to locked bytes returns a Write Security Error.

Field	Content
Header	0202H
Command Size	Command length in bytes excluding the header, command size, checksum, and terminator bytes. 07H for this command.
Command	91H
Family Code	Tag Family ID - 00H = all tags
Reserved	Ignored byte, set to 00H
Timeout	Timeout value given in 1 ms units
Starting Block	First block of memory to be locked
Number of Blocks	Number of blocks that will be locked
Checksum	Optional checksum
Message Terminator	03H

This example locks blocks 0-2 on all tags-in-field with the family code of 02H. Two tags are found and locked.

Command from Host	
Field	Content
Header	0202H
Command Size	0007H
Command Code	91H
Family ID	02H
Reserved	00H
Timeout	07D0H
First block	00H
Number of blocks	03H
Checksum	91H
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0003H	
Command Echo	91H	
Number of Tags	02H	
Status Byte	08H	
Checksum	64H	
Terminator	03H	

6.5.19 ABxF Command 8BH: Write Family Code All

DESCRIPTION

Command 8BH can be used to write the family code of all tags in the field. It can also be used to selectively rewrite the family codes of tags with family codes already set to a particular value.

Field	Content
Header	0202H
Command Size	Command length in bytes excluding the header, command size, checksum, and terminator bytes. 06H for this command.
Command	8BH
Current Family Code	Tag Family ID - 00H = all tags used to select which tags are addressed
Reserved	Ignored byte, set to 00H
Timeout	Timeout value given in 1 ms units
New Family Code	Value that is written to the family codes of all the addressed tags
Checksum	Optional checksum
Message Terminator	03H

This example changes the family code depending on the current value of the family code. Two tags are found with family code 02H and are changed to 03H.

Command from Host	
Field	Content
Header	0202H
Command Size	0006H
Command Code	8BH
Family ID	02H
Reserved	00H
Timeout	07D0H
New Family Code	03H
Checksum	92H
Terminator	03H

Response from Controller		
Field	Content	
Header	0202H	
Response Size	0001H	
Command Echo	8BH	
Ntags/Status	0208H	
Checksum	F7H	
Terminator	03H	

6.5.20 ABxF Command 8CH: Lock Family Code All

DESCRIPTION

Command 8CH locks the family codes of tags in the field. Once locked, the family codes cannot be changed or unlocked.

DISCUSSION

The command must pass a family code to select the tags whose family code will be locked. The controller returns a response when the timeout period expires. The parameter of the response is the number of tags written.

Field	Content
Header	0202H
Command Size	Command length in bytes excluding the header, command size, checksum, and terminator bytes. 07H for this command.
Command	8CH
Family Code	Tag Family ID - 00H = all tags
Reserved	Ignored byte, set to 00H
Timeout	Timeout value given in 1 ms units
Checksum	Optional checksum
Message Terminator	03H

This example locks the family code on all tags with the family code of 02H. Two tags are found and locked.

Command from Host	
Field	Content
Header	0202H
Command Size	0005H
Command Code	8CH
Family ID	02H
Reserved	00H
Timeout	07D0H
Checksum	95H
Terminator	03H

Response form Controller		
Field	Content	
Header	0202H	
Response Size	0003H	
Command Echo	8CH	
Number of Tags	02H	
Status Byte	08H	
Checksum	67H	
Terminator	03H	
•	•	

6.5.21 ABxF Command 94H: SN Fill

DESCRIPTION

Command 94H fills only the RFID tag specified by serial number with a one-byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one-byte value repetitively across a specified range of tag addresses. Only the tag with the specified serial number is affected by this command. The controller returns a response after the successful fill operation, or when the timeout expires. The fill function requires a serial number, one data value byte, a starting address, and a fill length. It fills the specified tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. When the fill length is set to 0, the controller writes fill data from the start address to the end of the tag's memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. It returns a response when done or when the timeout expires.

Field	Content
Header	0202H
Command Size	Command length in bytes excluding the header, command size, checksum, and terminator bytes
Command	94H
Family Code	Ignored byte, set to 00H
Reserved	Ignored byte, set to 00H
Start Address	2-byte value for the starting tag address
Number of Bytes	2-byte value for the length of the fill in number of bytes
Timeout	Timeout value given in 1 ms units
Serial Number	Serial number of the tag to be addressed
Data Value	Value to be written to all addressed bytes
Checksum	Optional checksum
Message Terminator	03H

This example fills the tag with serial number 1DB0320000104E0 with FFH.

Command from Host	
Field	Content
Header	0202H
Command Size	000FH
Command Code	94H
Family Code	00H
Reserved	00H
Start Address	0AH
Number of bytes	00H
Timeout	07D0H
SN Byte 1	1DH
SN Byte 2	ВОН
SN Byte 3	32H
SN Byte 4	00H
SN Byte 5	00H
SN Byte 6	01H
SN Byte 7	04H
SN Byte 8	E0H
Data Value	FFH
Checksum	9DH
Terminator	03H

Response form Controller			
Field	Content		
Header	0202H		
Response Size	0001H		
Command Echo	94H		
Checksum	68H		
Terminator	03H		

6.5.22 ABxF Command 95H: SN Block Read

DESCRIPTION

Command 95H reads a block of data from a specified RFID tag.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It handles up to 1 kByte of data transferred to the host with one command. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The SN Block Read consists of Family ID, serial number, a start address, and length followed by a timeout value. The eight-byte serial number of the target tag is specified. If the read length exceeds the last tag address, the controller returns an error message in the status byte. It returns a response when done, or when the timeout expires.

Field	Content
Header	0202H
Command Size	Command length in bytes excluding the header, command size, checksum, and terminator bytes.
Command	95H
Family Code	Ignored byte, set to 00H
Reserved	Ignored byte, set to 00H
Start Address	2-byte value for the starting tag address
Number of Bytes	2-byte value for the length of the fill in number of bytes
Timeout	Timeout value given in 1 ms units
Serial Number	Serial number of the tag to be addressed
Checksum	Optional checksum
Message Terminator	03H

This example reads 10 bytes from the tag with serial number 1DB0320000104E0 starting at address 0AH.

Command from Host			
Field	Content		
Header	0202H		
Command Size	000EH		
Command Code	95H		
Family Code	00H		
Reserved	00H		
Start Address	0AH		
Number of bytes	0AH		
Timeout	07D0H		
SN Byte 1	1DH		
SN Byte 2	ВОН		
SN Byte 3	32H		
SN Byte 4	00H		
SN Byte 5	00H		
SN Byte 6	01H		
SN Byte 7	04H		
SN Byte 8	E0H		
Checksum	92H		
Terminator	03H		

Response form Controller			
Field	Content		
Header	0202H		
Response Size	000BH		
Command Echo	95H		
Data from Address 000AH	05H		
Data from Address 000BH	AAH		
Data from Address 000CH	21H		
Data from Address 000DH	44H		
Data from Address 000EH	05H		
Data from Address 000FH	AAH		
Data from Address 0010H	AAH		
Data from Address 0011H	21H		
Data from Address 0012H	44H		
Data from Address 0013H	05H		
Checksum	86H		
Terminator	03H		

6.5.23 ABxF Command 96H: SN Block Write

DESCRIPTION

Command 96H writes data to a single RFID tag specified by its serial number.

DISCUSSION

This command is used to write data to contiguous areas of tag memory. It transfers up to 1 kByte of data from the host to the controller in a single command. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the controller returns a syntax error. The SN Block Write consists of a Family ID, serial number, and start address, followed by the data stream to be written to the RFID tag. If the write range exceeds the last tag address, the controller returns a syntax error, 21H. It returns a response when done or when the timeout expires.

Field	Content
Header	0202H
Command Size	Command length in bytes excluding the header, command size, checksum, and terminator bytes.
Command	96H
Family Code	Ignored byte, set to 00H
Reserved	Ignored byte, set to 00H
Start Address	2-byte value for the starting tag address
Number of Bytes	2-byte value for the length of the fill in number of bytes
Timeout	Timeout value given in 1 ms units
Serial Number	Serial number of the tag to be addressed
Data	Data to be written to the tag
Checksum	Optional checksum
Message Terminator	03H

121

This example writes 4 bytes to the tag with serial number 1DB0320000104E0 starting at address 0AH.

Command from Host			
Field	Content		
Header	0202H		
Command Size	0012H		
Command Code	96H		
Family Code	00H		
Reserved	00H		
Start Address	0AH		
Number of bytes	04H		
Timeout	07D0H		
SN Byte 1	1DH		
SN Byte 2	ВОН		
SN Byte 3	32H		
SN Byte 4	00H		
SN Byte 5	00H		
SN Byte 6	01H		
SN Byte 7	04H		
SN Byte 8	E0H		
Data byte 1	10H		
Data byte 2	11H		
Data byte 3	12H		
Data byte 4	13H		
Checksum	4DH		
Terminator	03H		

Response form Controller			
Field	Content		
Header	0202H		
Response Size	0001H		
Command Echo	96H		
Checksum	69H		
Terminator	03H		

6.5.24 ABxF Command 10H: Set Output

DESCRIPTION

Command 10H sets the states of the output lines and output LEDs "A" through "D."

DISCUSSION

This command sets the state of the digital output lines using a one-byte parameter, Output Status. The least significant nibble of the Output Status Byte determines the status of the outputs. The least significant bit of this nibble corresponds to Output A. The most significant bit of this nibble corresponds to Output D. The most significant nibble of the Output Status Byte is reserved and should be set to 0H. An output bit set to one (1) turns the corresponding LED on, and closes the electronic switch of the output, allowing current to flow through the output circuit. An output bit reset to zero turns the corresponding LED off, and open the electronic switch in the output circuit. The following chart shows the hex values for all combinations of output status bytes. To reset all output bits, issue the command with 00H for the output status byte.

Output Status Byte	Remarks	LSB Bit 3 Output D	LSB Bit 2 Output C	LSB Bit 1 Output B	LSB Bit 0 Output A
00H	Reset A, B, C, D	0	0	0	0
01H	Set Output A - Reset B, C, D	0	0	0	1
02H	Set Output B - Reset A, C, D	0	0	1	0
03H	Set Output A, B - Reset C, D	0	0	1	1
04H	Set Output C - Reset A, B, D	0	1	0	0
05H	Set Output A, C - Reset B, D	0	1	0	1
06H	Set Output B, C - Reset A, D	0	1	1	0
07H	Set Output A, B, C - Reset D	0	1	1	1
08H	Set Output D - Reset A, B, C	1	0	0	0
09H	Set Output A, D - Reset B, C	1	0	0	1
0AH	Set Output B, D - Reset A, C	1	0	1	0
0BH	Set Output A, B, D - Reset C	1	0	1	1
0CH	Set Output C, D - Reset A, B	1	1	0	0
0DH	Set Output A, C, D - Reset B	1	1	0	1
0EH	Set Output B, C, D - Reset A	1	1	1	0
0FH	Set Output A, B, C, D	1	1	1	1

Field	Content
Header	0202H
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes
Command	10H
Output Status Byte	1 byte representing the desired output settings in bits 0-3
Checksum	Optional checksum
Terminator	03H

The following example sets Output B only and resets A, C, and D.

Command from Host			
Field	Content		
Header	0202H		
Command Size	0002H		
Command Code	10H		
Output Value Byte	02H		
Checksum	EBH		
Terminator	03H		

Response from Controller			
Content			
0202H			
0001H			
10H			
EEH			
03H			

6.5.25 ABxF Command 11H: Input Status

DESCRIPTION

Command 11H returns the status of user inputs.

DISCUSSION

This command interrogates the state of the user input lines and returns a one-byte parameter, Input Status. The least significant nibble of the Input Status Byte is determined by the status of the inputs. The least significant bit of this nibble corresponds to Input A. The most significant bit of this nibble corresponds to Input D. The most significant nibble of the Input Status Byte is set to 0H. A closed circuit in one (1) of the user inputs sets the corresponding user input bit to one, turning the corresponding LED on. An open circuit in one of the user inputs, sets the corresponding user input bit to zero, turning off the corresponding LED. The following chart shows all of the valid hex values for the input status bytes.

Input Status Byte	Remarks	LSB Bit 3 Input D	LSB Bit 2 Input C	LSB Bit 1 Input B	LSB Bit 0 Input A
00H	Inputs A, B, C, D, open	0	0	0	0
01H	Input A, closed - B, C, D, open	0	0	0	1
02H	Input B, closed - A, C, D, open	0	0	1	0
03H	Input A, B, closed - C, D, open	0	0	1	1
04H	Input C, closed - A, B, D, open	0	1	0	0
05H	Input A, C, closed - B, D, open	0	1	0	1
06H	Input B, C, closed - A, D, open	0	1	1	0
07H	Input A, B, C, closed - D, open	0	1	1	1
08H	Input D, closed - A, B, C, open	1	0	0	0
09H	Input A, D, closed - B, C, open	1	0	0	1
0AH	Input B, D, closed - A, C, open	1	0	1	0
0BH	Input A, B, D, closed - C, open	1	0	1	1
0CH	Input C, D, closed - A, B, open	1	1	0	0
0DH	Input A, C, D, closed - B, open	1	1	0	1
0EH	Input B, C, D, closed - A, open	1	1	1	0
0FH	Input A, B, C, D, closed	1	1	1	1

Field	Content
Header	0202H
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes
Command	11H
Checksum	Optional checksum
Terminator	03H

The following example shows only input B is ON, and A, C, and D are OFF.

Field	Content
Header	0202H
Command Size	0001H
Command Code	11H
Checksum	EDH
Terminator	03H

Field	Content
Header	0202H
Response Size	0002H
Command Echo	11H
Input Status Byte	02H
Checksum	EAH
Terminator	03H

125

6.6 ABx ASCII Protocol

The ABx ASCII Protocol is based on the ABx Fast protocol. It uses the same headers and terminator (already ASCII characters) and converts the hex value of command and data bytes to printable ASCII (two-digit hexadecimal notation). In another words, the hex values given in an ABx Fast command are transmitted as separate ASCII characters. Since it is an ASCII protocol, the Xon/Xoff handshake can be used.

Command Packet Structure

The command protocol is based on the following minimal packet structure. The data field and the checksum may not be present depending on the command type and your checksum setting.

6.6.1 ABx ASCII Protocol Command Structure

Field	Number of ASCII Characters	Content
Header	2	<stx><stx> (02H, 02H)</stx></stx>
Command Size	4	Packet length in bytes excluding the header, command size, checksum, and terminator bytes
Command	2	Command Code
(Data)	Variable	Command data/parameters
Checksum	2	Optional checksum
Terminator	1	<etx>(03H)</etx>

Following a successful operation, the controller responds with the response structure shown in *6.6.2 ABx ASCII Protocol Response Structure*. The data field and the checksum may not be present depending on the command and your checksum setting. If a checksum is enabled in the Configuration Menu, then it is always present for every command.

6.6.2 ABx ASCII Protocol Response Structure

Field	Number of ASCII Characters	Content
Header	2	<stx><stx> (02H, 02H)</stx></stx>
Response Size	4	Packet length in bytes excluding the header, command size, checksum, and terminator bytes
Command	2	Command echo
(Data)	Variable	Response data
Checksum	2	Optional checksum
Terminator	1	<etx> (03H)</etx>

If the controller encounters a fault, it responds with the following:

Field	Number of ASCII Characters	Content
Header	2	<stx><stx> (02H, 02H)</stx></stx>
Response Size	4	Packet length in bytes excluding the header, response size, checksum and terminator bytes.
Error Flag	2	FFH
Error Code	2	Hex error code
Checksum	2	Optional checksum
Terminator	1	<etx> (03H)</etx>

Most RF operations also require additional parameters and data that will be included in the command stream between the command code or echo and the terminator. The header and terminator are always STX and ETX respectively. Any other field value is in ASCII hex notation. Allowed values: '0'-'9', 'A'-'F'. Example: the value ABH (decimal 171) in ASCII protocol is transmitted as a two-character string «AB», i.e. the two bytes: 41H 42H (ASCII values for 'A' and 'B'). The hex value of the hex digits given in ASCII are: '0'-'9' = 30H - 39H, 'A'-'F' = 41H-46H. The sequence for each command is given with the response format in the preceding section. Referring to the ABx Fast command you can structure the ABx ASCII commands by using ASCII values for each digit of the hex values, excluding the header and terminator that are already ASCII characters.

Command/Response Size

The ABx ASCII requires the length of the packet be included in the command. All parameters and data between the command size and the terminator or checksum byte must be accounted for in the packet size word. This includes all command codes and parameters such as field definition for Block Read/Writes. The packet size remains the same with or without the checksum.

Checksum

The optional checksum must be enabled from the operating mode menu to be available. The checksum is calculated by adding all the byte values (not the ASCII translation values) in the packet (less the values in the header, checksum if present, and terminator), discarding byte overflow, and subtracting the byte sum from FFH.

Example ASCII Command, Fill Tag

This command fills the specified number of cells from the specified start address with the specified value. Block size = 0 means filling to the end of the memory. The command takes the same form as the ABx Fast command.

Field	Content
Header	<stx><stx></stx></stx>
Command Size	Packet length in bytes excluding the header, command size, checksum, and terminator bytes. Given as four ASCII character value. 0008H for this command
Command	<30H><34H> (04)
Start Address	4 ASCII character value for the starting tag address
Fill Length	4 ASCII character value for the length of the fill in number of bytes
Timeout	4 ASCII character value for timeout in 1 ms units. (1EH - FFFEH)
Data Value Byte	2 ASCII character value for 1 byte of fill
Checksum	2 ASCII character value for Optional Checksum
Terminator	<etx></etx>

The ASCII character string for a fill of 32 bytes, from address 0 with 55H value, timeout 5 sec., follows:

Command from Host			
Field	ASCII Hex Value	ASCII String	
Header	02H	STX	
<stx><stx></stx></stx>	02H	STX	
Command Size	30H	0	
	30H	0	
	30H	0	
	38H	8	
Command	30H	0	
	34H	4	
Start Address	30H	0	
	30H	0	
	30H	0	
	30H	0	
Fill Length	30H	0	
	30H	0	
	32H	2	
	80H	0	
Timeout Value	31H	1	
	33H	3	
	38H	8	
	38H	8	
Data Byte Value	35H	5	
	35H	5	
Checksum	31H	1	
	33H	3	
Terminators <etx></etx>	03H	ETX	

Response from Controller		
Field	ASCII Hex Value	ASCII String
Header	02H	STX
<stx><stx></stx></stx>	02H	STX
Response Size	30H	0
	30H	0
	31H	1
	30H	0
Command Echo	30H	0
	34H	4
Checksum	44H	D
	41H	Α
Terminators < ETX >	03H	ETX

6.7 ABx Error Codes

6.7.1 Multi-tag Error Codes

The LRP2000 returns an error if it encounters a fault during operation. The table below lists the possible error codes in hexadecimal format.

Error Code	Description	
04H	Fill operation has failed	
05H	Block Read has failed	
06H	Block Write has failed	
07H	Block Write security error	
08H	Search Tag operation failed	
21H	Input command does not match pre-defined format (syntax error)	
3DH	Unknown tag type	
3EH	Command not supported by current tag type	
80H	Antenna failure	

Additionally there are internal DSP errors, F1H through F5H, for use by Escort Memory Systems technical support.

6.7.2 ABx Standard Error Codes

ABxS error codes are returned in the LSB of the second word passed to the host. The format of the error response is shown below.

MSB	LSB	Remarks
AAH	FFH	Command Error
00H	XXH	Error Code
FFH	FFH	Message Terminator

Example

A Block Write fail error message would appear as:

AAFF 0006 FFFFH.

6.7.3 ABx Fast Error Codes

The format of the error response is shown in the table below.

Field	Bytes Contents
Header	02H
<stx><stx></stx></stx>	02H
Response Size	00H 02H
Error Flag	FFH
Error Code	XXH
Checksum	XXH
Terminators <etx></etx>	03H

Example

A Block Write fail error message would appear as:

0202 0002 FF06 F803H.

6.7.4 ABx ASCII Error Codes

The format of the error response is shown below.

Field	Number of ASCII Characters	Contents
Header	2	<stx><stx> 02H, 02H</stx></stx>
Response Size	4	Packet length in bytes excluding the header, response size, checksum, and terminator bytes
Error Flag	2	FFH
Error Code	2	XXH
Checksum	2	XXH - optional checksum
Terminators <etx></etx>	1	<etx> 03H</etx>

A Block Write fail error message would appear as an ASCII character string:

<STX><STX>0002FF06F8<ETX>

In hexadecimal, the commands appear as:

02H 02H 30H 30H 30H 32H 46H 46H 30H 36H 46H 38H 03H

6.7.5 Multi-tag Command Error Code

When the multi-tag commands encounter a fault condition, they indicate the error in a STATUS byte returned in the response. If any of the flag bits of the Status byte are set, then an error has occurred during command execution. In all other ways, the format of the response is the same as a successful response.

The STATUS byte is defined as follows:

7	Antenna Failure
6	R/W Error
5	Collisions
4	Internal Error
3	Timeout
2	Verify Error
1	Write Security Error
0	Reserved

Some of the error conditions are the same as those found in the single-tag commands, some are new and relate only to the anticollision. If any of the flag bits of the returned status are set, then that condition occurred during the command execution. Multiple conditions can occur in the same command.

Antenna Failure	There is an error at the antenna
R/W error	Error during the tag memory access
Internal Error	Internal error in low-level firmware (contact Escort Memory Systems technical assistance)
Timeout	Timeout expired
Verify Error	Set when re-read verification fails
Syntax Errors	Syntax errors (error code 21H) are returned in the same format as described for the single-tag commands.

131

Appendix A Specifications

A.1 Electrical

Supply Voltage: 28-30 Vdc

Power Consumption: 56W (2.0 A @ 28Vdc)

A.2 Communication

RF Interface: ISO/IEC 15693 Passive RFID System

Bus Interface: Ethernet TCP/IP (Option)

COM1: RS232/RS422

COM2: RS232

Inputs: Four industrial-level inputs, 4.5-30 Vdc (25mA max) Output: Four industrial-level outputs, 30 Vdc (500mA max)

A.3 Mechanical Specifications

Dimensions (L x W x H):

15.75 x 9.05 x 4.37 inches, (400 x 230 x 111 mm)

Weight: 11.5 lb. (5.2 kg)

Enclosure: Cast Aluminum Alloy

A.4 Environmental

Operating Temperature:

-4 to 120 degrees F (-40 to 49° C)

Storage Temperature:

-40 to 185 degrees F (-40 to 85° C)

Humidity: 95% non-condensing

Shock Resistance:

IEC 68-2-27 test EA 30g;11 ms; 3 shocks each axis

Vibration Resistance:

IEC 68-2-6 test FC 1.5 mm; 10 to 55 Hz; 2 hours each axis

Protection Class: NEMA 4 (IP66)

NOTE: Specifications are subject to change without notice.

Appendix B Models and Accessories

B.1 Available Models

Part Number	Description
LRP2000-26	Long range, passive controller; RS232, RS422 and RS485 communications, 4 digital inputs and 4 digital outputs; IEC/ISO 15693 RF protocol; Antenna, 6' ht; receive/transmit cable 11m
LRP2000-23	Long range, passive controller; RS232, RS422 and RS485 communications, 4 digital inputs and 4 digital outputs; IEC/ISO 15693 RF protocol; Antenna 3' ht; receive/transmit cable 11m

B.2 Options

Part Number	Description
00-1159	Ethernet TCP/IP Upgrade Kit for LRP2000 controller (LRP-PT-CTL20)

B.3 Accessories

Part Number	Description
00-1142	Power Supply, 120VAC 60Hz to 28VDC, 50W, US Cord set
00-1144	Power Supply, 220-240VAC 50Hz to 28VDC, 50W, EU Cord set
CBL-1476	Cable Assembly, LRP2000, Synchronization / Modulation, 61cm
CBL-1475	Cable Assembly, LRP2000, Antenna RX/TX, 11m
CBL-1474	Cable Assembly, LRP2000, DC Power, 11m

B.4 Tags

Part Number	Description
LRPS-L2666S	Passive read/write tag; 26 x 66 mm; thermal transfer with adhesive backing; 112 bytes memory
LRPS-L4982S	Passive read/write tag; 49 x 82 mm; thermal transfer with adhesive backing; 112 bytes memory
LRPS-L90140S	Passive read/write tag; 90 x 140 mm square; thermal transfer with adhesive backing; 112 bytes memory
LRP525HTS	Passive read/write high temperature tag -40 to 200°C, 52 x 128 mm; two mounting holes and brackets; ISO15693; 112 bytes of memory

Appendix C ASCII Chart

Decimal	Hex	Character
000	00	NUL
001	01	SOH
002	02	STX
003	03	ETX
004	04	EDT
005	05	ENQ
006	06	ACK
007	07	BEL
008	08	BS
009	09	НТ
010	0A	LF
011	0B	VT
012	0C	FF
013	0D	CR
014	0E	SO
015	0F	SI
016	10	DLE
017	11	DC1
018	12	DC2
019	13	DC3
020	14	DC4
021	15	NAK
022	16	SYN
023	17	ETB
024	18	CAN
025	19	EM
026	1A	SUB
027	1B	ESC
028	1C	FS
029	1D	GS
030	1E	RS
031	1F	US

Decimal	Hex	Character
032	20	(SPACE)
033	21	!
034	22	"
035	23	#
036	24	\$
037	25	%
038	26	&
039	27	,
040	28	(
041	29)
042	2A	*
043	2B	+
044	2C	£
045	2D	-
046	2E	
047	2F	/
048	30	0
049	31	1
050	32	2
051	33	3
052	34	4
053	35	5
054	36	6
055	37	7
056	38	8
057	39	9
058	3A	:
059	3B	;
060	3C	<
061	3D	=
062	3E	>
063	3F	?

art.			
Decimal	Hex	Character	
064	40	@	
065	41	А	
066	42	В	
067	43	С	
068	44	D	
069	45	E	
070	46	F	
071	47	G	
072	48	Н	
073	49	I	
074	4A	J	
075	4B	К	
076	4C	L	
077	4D	М	
078	4E	N	
079	4F	0	
080	50	Р	
081	51	Q	
082	52	R	
083	53	S	
084	54	Т	
085	55	U	
086	56	V	
087	57	W	
088	58	Х	
089	59	Υ	
090	5A	Z	
091	5B	[
092	5C	\	
093	5D]	
094	5E	^	
095	5F	_	

Decimal	Hex	Character
096	5F	•
097	60	а
098	61	b
099	62	С
100	63	d
101	64	е
102	65	f
103	66	g
104	67	h
105	68	i
106	69	j
107	6A	k
108	6B	I
109	6C	m
110	6D	n
111	6F	0
112	70	р
113	71	q
114	72	r
115	73	s
116	74	t
117	75	u
118	76	V
119	77	w
120	78	х
121	79	у
122	7A	z
123	7B	{
124	7C	1
125	7D	}
126	7E	~
127	7F	DEL